The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Image captioning has seen significant research efforts over the last decade.The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate.Man...Image captioning has seen significant research efforts over the last decade.The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate.Many real-world applications rely on image captioning,such as helping people with visual impairments to see their surroundings.To formulate a coherent and relevant textual description,computer vision techniques are utilized to comprehend the visual content within an image,followed by natural language processing methods.Numerous approaches and models have been developed to deal with this multifaceted problem.Several models prove to be stateof-the-art solutions in this field.This work offers an exclusive perspective emphasizing the most critical strategies and techniques for enhancing image caption generation.Rather than reviewing all previous image captioning work,we analyze various techniques that significantly improve image caption generation and achieve significant performance improvements,including encompassing image captioning with visual attention methods,exploring semantic information types in captions,and employing multi-caption generation techniques.Further,advancements such as neural architecture search,few-shot learning,multi-phase learning,and cross-modal embedding within image caption networks are examined for their transformative effects.The comprehensive quantitative analysis conducted in this study identifies cutting-edgemethodologies and sheds light on their profound impact,driving forward the forefront of image captioning technology.展开更多
Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience...Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.展开更多
Lung cancer(LC)is a major cancer which accounts for higher mortality rates worldwide.Doctors utilise many imaging modalities for identifying lung tumours and their severity in earlier stages.Nowadays,machine learning(...Lung cancer(LC)is a major cancer which accounts for higher mortality rates worldwide.Doctors utilise many imaging modalities for identifying lung tumours and their severity in earlier stages.Nowadays,machine learning(ML)and deep learning(DL)methodologies are utilised for the robust detection and prediction of lung tumours.Recently,multi modal imaging emerged as a robust technique for lung tumour detection by combining various imaging features.To cope with that,we propose a novel multi modal imaging technique named versatile scale malleable image integration and patch wise attention network(VSMI2−PANet)which adopts three imaging modalities named computed tomography(CT),magnetic resonance imaging(MRI)and single photon emission computed tomography(SPECT).The designed model accepts input from CT and MRI images and passes it to the VSMI2 module that is composed of three sub-modules named image cropping module,scale malleable convolution layer(SMCL)and PANet module.CT and MRI images are subjected to image cropping module in a parallel manner to crop the meaningful image patches and provide them to the SMCL module.The SMCL module is composed of adaptive convolutional layers that investigate those patches in a parallel manner by preserving the spatial information.The output from the SMCL is then fused and provided to the PANet module.The PANet module examines the fused patches by analysing its height,width and channels of the image patch.As a result,it provides an output as high-resolution spatial attention maps indicating the location of suspicious tumours.The high-resolution spatial attention maps are then provided as an input to the backbone module which uses light wave transformer(LWT)for segmenting the lung tumours into three classes,such as normal,benign and malignant.In addition,the LWT also accepts SPECT image as input for capturing the variations precisely to segment the lung tumours.The performance of the proposed model is validated using several performance metrics,such as accuracy,precision,recall,F1-score and AUC curve,and the results show that the proposed work outperforms the existing approaches.展开更多
Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to vulnerabilities in deep learning models.Existing defense mechanisms often suffer drawbacks,such as the need for mode...Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to vulnerabilities in deep learning models.Existing defense mechanisms often suffer drawbacks,such as the need for model retraining,significant inference time overhead,and limited effectiveness against specific attack types.Achieving perfect defense against adversarial attacks remains elusive,emphasizing the importance of mitigation strategies.In this study,we propose a defense mechanism that applies random cropping and Gaussian filtering to input images to mitigate the impact of adversarial attacks.First,the image was randomly cropped to vary its dimensions and then placed at the center of a fixed 299299 space,with the remaining areas filled with zero padding.Subsequently,Gaussian×filtering with a 77 kernel and a standard deviation of two was applied using a convolution operation.Finally,the×smoothed image was fed into the classification model.The proposed defense method consistently appeared in the upperright region across all attack scenarios,demonstrating its ability to preserve classification performance on clean images while significantly mitigating adversarial attacks.This visualization confirms that the proposed method is effective and reliable for defending against adversarial perturbations.Moreover,the proposed method incurs minimal computational overhead,making it suitable for real-time applications.Furthermore,owing to its model-agnostic nature,the proposed method can be easily incorporated into various neural network architectures,serving as a fundamental module for adversarial defense strategies.展开更多
Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating th...Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating this condition.Nevertheless,considering the vast amount of research that is currently being conducted,focusing on the utilization of TCM in the management of myopia,there is an urgent requirement for a thorough and comprehensive review.The review would serve to clarify the practical applications of TCM within this specific field,and it would also aim to elucidate the underlying mechanisms that are at play,providing a deeper understanding of how TCM principles can be effectively integrated into modern medical practices.Here,some modern medical pathogenesis of myopia and appropriate TCM techniques studies are summarized in the prevention and treatment of myopia.Further,we discussed the potential mechanisms and the future research directions of TCM against myopia.Identifying these mechanisms is crucial for understanding how TCM can be effectively utilized in this context.The combination of various TCM methods or the combination of traditional Chinese and Western medicine is of great significance for the prevention and control of myopia in the future.展开更多
Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by ...Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by Hu et al,which evaluated the survival outcomes of patients with metastatic CRC who received image-guided thermal ablation(IGTA).These findings provide valuable clinical evidence supporting IGTA as a feasible,minimally invasive approach and underscore the prognostic significance of metastatic distribution.However,the study by Hu et al has several limitations,including that not all pulmonary lesions were pathologically confirmed,postoperative follow-up mainly relied on dynamic contrast-enhanced computed tomography,no comparative analysis was performed with other local treatments,and the impact of other imaging features on efficacy and prognosis was not evaluated.Future studies should include complete pathological confirmation,integrate functional imaging and radiomics,and use prospective multicenter collaboration to optimize patient selection standards for IGTA treatment,strengthen its clinical evidence base,and ultimately promote individualized decision-making for patients with metastatic CRC.展开更多
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of ...Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of seismic ambient noise. There are four techniques for estimating temporal change of seismic velocity with PII: moving-window cross-correlation technique (MWCCT), moving-window cross-spectrum technique (MWCST), stretching technique (ST) and moving-window stretching technique (MWST). In this paper, we use the continuous seismic records from a typical station pair near the Wenchuan Ms8.0 earthquake fault zone and generate three sets of waveforms by stacking cross-correlation function of ambient noise with different numbers of days, and then apply four techniques to processing the three sets of waveforms and compare their results. Our results indicate that the techniques based on moving-window (MWCCT, MWCST and MWST) are superior in detecting the change of seismic velocity, and the MWCST can give a better estimate of velocity change than the other moving-window techniques due to measurement error. We also investigate the clock errors and their influences on measuring velocity change. We find that when the clock errors are not very large, they have limited impact on the estimate of the velocity change with the moving-window techniques.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the mo...Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.展开更多
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to...<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>展开更多
Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and...Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and foreign scholars in the blind forensic technology of JPEG image tampering were briefly described. Then, according to the different methods of tampering and detection, the current detection was divided into two types: double JPEG compression detection and block effect inconsistency detection. This paper summarized the existing methods of JPEG image blind forensics detection, and analyzed the two methods. Finally, the existing problems and future research trends were analyzed and prospected to provide further theoretical support for the research of JPEG image blind forensics technology.展开更多
The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for th...The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.展开更多
A new instrument based on light projection and image analysis techniques for assessing fabric pilling is presented. This system can automatically detect the pills from the successive sections of the fabric surface, wh...A new instrument based on light projection and image analysis techniques for assessing fabric pilling is presented. This system can automatically detect the pills from the successive sections of the fabric surface, which can make up for the limitation of both the gray level image -analysis techniques and laser triangulab’on techniques. The test of a large number of worsted wool fabric samples shows that it can objectively characterize the degree of pilling by using fuzzy sets and has good accordance with human visual inspection.展开更多
Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The ...Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves.展开更多
The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR image...The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR images is extremely difficult.We presented a method which combines multi-atlas image segmentation with extreme learning machine based bias detection and correction technique to achieve a fully automatic segmentation of hippocampal subfields.Symmetric diffeomorphic registration driven by symmetric mutual information energy was implemented in atlas registration,which allows multi-modal image registration and accelerates execution time.An exponential function based label fusion strategy was proposed for the normalized similarity measure case in segmentation combination,which yields better combination accuracy.The test results show that this method is effective,especially for the larger subfields with an overlap of more than 80%,which is competitive with the current methods and is of potential clinical significance.展开更多
Radio astronomy radio telescope plays the role of a linear operator, affecting the function that describes the object of research, formation of image of a monitored object. This paper presents methods for reconstructi...Radio astronomy radio telescope plays the role of a linear operator, affecting the function that describes the object of research, formation of image of a monitored object. This paper presents methods for reconstruction and correction of solar radio images using the algorithm of rejections, the updated Weiner-filter, and the method CLEAN designed by Hegbomom (Pseudonym, 2009) for point sources. It is the process of numerical convolution in signal handling, an algorithm for separating weak-contrast formations on the solar which represents most points of the actual limb by using the ellipse equation. Consequently, the filling algorithm is applied by moving from the center to the ellipse points and filling each point by solar image data. Finally, a linear limb-darkening expression is used to remove the limb darkening. Different examples of the intermediate and final results are presented in addition to the developed algorithm.展开更多
The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedd...The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent.The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types:tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.展开更多
Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential ...Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection.展开更多
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金supported by the National Natural Science Foundation of China(Nos.U22A2034,62177047)High Caliber Foreign Experts Introduction Plan funded by MOST,and Central South University Research Programme of Advanced Interdisciplinary Studies(No.2023QYJC020).
文摘Image captioning has seen significant research efforts over the last decade.The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate.Many real-world applications rely on image captioning,such as helping people with visual impairments to see their surroundings.To formulate a coherent and relevant textual description,computer vision techniques are utilized to comprehend the visual content within an image,followed by natural language processing methods.Numerous approaches and models have been developed to deal with this multifaceted problem.Several models prove to be stateof-the-art solutions in this field.This work offers an exclusive perspective emphasizing the most critical strategies and techniques for enhancing image caption generation.Rather than reviewing all previous image captioning work,we analyze various techniques that significantly improve image caption generation and achieve significant performance improvements,including encompassing image captioning with visual attention methods,exploring semantic information types in captions,and employing multi-caption generation techniques.Further,advancements such as neural architecture search,few-shot learning,multi-phase learning,and cross-modal embedding within image caption networks are examined for their transformative effects.The comprehensive quantitative analysis conducted in this study identifies cutting-edgemethodologies and sheds light on their profound impact,driving forward the forefront of image captioning technology.
基金supported by the National Natural Science Foundation of China,No.31760290,82160688the Key Development Areas Project of Ganzhou Science and Technology,No.2022B-SF9554(all to XL)。
文摘Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.
基金supported by the VTT Technical Research Centre of Finland and the work of Nayef Alqahtani is supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant KFU251882).
文摘Lung cancer(LC)is a major cancer which accounts for higher mortality rates worldwide.Doctors utilise many imaging modalities for identifying lung tumours and their severity in earlier stages.Nowadays,machine learning(ML)and deep learning(DL)methodologies are utilised for the robust detection and prediction of lung tumours.Recently,multi modal imaging emerged as a robust technique for lung tumour detection by combining various imaging features.To cope with that,we propose a novel multi modal imaging technique named versatile scale malleable image integration and patch wise attention network(VSMI2−PANet)which adopts three imaging modalities named computed tomography(CT),magnetic resonance imaging(MRI)and single photon emission computed tomography(SPECT).The designed model accepts input from CT and MRI images and passes it to the VSMI2 module that is composed of three sub-modules named image cropping module,scale malleable convolution layer(SMCL)and PANet module.CT and MRI images are subjected to image cropping module in a parallel manner to crop the meaningful image patches and provide them to the SMCL module.The SMCL module is composed of adaptive convolutional layers that investigate those patches in a parallel manner by preserving the spatial information.The output from the SMCL is then fused and provided to the PANet module.The PANet module examines the fused patches by analysing its height,width and channels of the image patch.As a result,it provides an output as high-resolution spatial attention maps indicating the location of suspicious tumours.The high-resolution spatial attention maps are then provided as an input to the backbone module which uses light wave transformer(LWT)for segmenting the lung tumours into three classes,such as normal,benign and malignant.In addition,the LWT also accepts SPECT image as input for capturing the variations precisely to segment the lung tumours.The performance of the proposed model is validated using several performance metrics,such as accuracy,precision,recall,F1-score and AUC curve,and the results show that the proposed work outperforms the existing approaches.
基金supported by the Glocal University 30 Project Fund of Gyeongsang National University in 2025.
文摘Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to vulnerabilities in deep learning models.Existing defense mechanisms often suffer drawbacks,such as the need for model retraining,significant inference time overhead,and limited effectiveness against specific attack types.Achieving perfect defense against adversarial attacks remains elusive,emphasizing the importance of mitigation strategies.In this study,we propose a defense mechanism that applies random cropping and Gaussian filtering to input images to mitigate the impact of adversarial attacks.First,the image was randomly cropped to vary its dimensions and then placed at the center of a fixed 299299 space,with the remaining areas filled with zero padding.Subsequently,Gaussian×filtering with a 77 kernel and a standard deviation of two was applied using a convolution operation.Finally,the×smoothed image was fed into the classification model.The proposed defense method consistently appeared in the upperright region across all attack scenarios,demonstrating its ability to preserve classification performance on clean images while significantly mitigating adversarial attacks.This visualization confirms that the proposed method is effective and reliable for defending against adversarial perturbations.Moreover,the proposed method incurs minimal computational overhead,making it suitable for real-time applications.Furthermore,owing to its model-agnostic nature,the proposed method can be easily incorporated into various neural network architectures,serving as a fundamental module for adversarial defense strategies.
基金supported by Healthy China initiative of Traditional Chinese Medicine(No.889042).
文摘Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating this condition.Nevertheless,considering the vast amount of research that is currently being conducted,focusing on the utilization of TCM in the management of myopia,there is an urgent requirement for a thorough and comprehensive review.The review would serve to clarify the practical applications of TCM within this specific field,and it would also aim to elucidate the underlying mechanisms that are at play,providing a deeper understanding of how TCM principles can be effectively integrated into modern medical practices.Here,some modern medical pathogenesis of myopia and appropriate TCM techniques studies are summarized in the prevention and treatment of myopia.Further,we discussed the potential mechanisms and the future research directions of TCM against myopia.Identifying these mechanisms is crucial for understanding how TCM can be effectively utilized in this context.The combination of various TCM methods or the combination of traditional Chinese and Western medicine is of great significance for the prevention and control of myopia in the future.
文摘Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by Hu et al,which evaluated the survival outcomes of patients with metastatic CRC who received image-guided thermal ablation(IGTA).These findings provide valuable clinical evidence supporting IGTA as a feasible,minimally invasive approach and underscore the prognostic significance of metastatic distribution.However,the study by Hu et al has several limitations,including that not all pulmonary lesions were pathologically confirmed,postoperative follow-up mainly relied on dynamic contrast-enhanced computed tomography,no comparative analysis was performed with other local treatments,and the impact of other imaging features on efficacy and prognosis was not evaluated.Future studies should include complete pathological confirmation,integrate functional imaging and radiomics,and use prospective multicenter collaboration to optimize patient selection standards for IGTA treatment,strengthen its clinical evidence base,and ultimately promote individualized decision-making for patients with metastatic CRC.
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
基金supported by National Natural Science Foundation of China (No. 41074061)Basic Research Plan of the Institute of Earthquake Science, China Earthquake Administration (No. 2007-13)
文摘Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of seismic ambient noise. There are four techniques for estimating temporal change of seismic velocity with PII: moving-window cross-correlation technique (MWCCT), moving-window cross-spectrum technique (MWCST), stretching technique (ST) and moving-window stretching technique (MWST). In this paper, we use the continuous seismic records from a typical station pair near the Wenchuan Ms8.0 earthquake fault zone and generate three sets of waveforms by stacking cross-correlation function of ambient noise with different numbers of days, and then apply four techniques to processing the three sets of waveforms and compare their results. Our results indicate that the techniques based on moving-window (MWCCT, MWCST and MWST) are superior in detecting the change of seismic velocity, and the MWCST can give a better estimate of velocity change than the other moving-window techniques due to measurement error. We also investigate the clock errors and their influences on measuring velocity change. We find that when the clock errors are not very large, they have limited impact on the estimate of the velocity change with the moving-window techniques.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
文摘Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.
文摘<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>
文摘Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and foreign scholars in the blind forensic technology of JPEG image tampering were briefly described. Then, according to the different methods of tampering and detection, the current detection was divided into two types: double JPEG compression detection and block effect inconsistency detection. This paper summarized the existing methods of JPEG image blind forensics detection, and analyzed the two methods. Finally, the existing problems and future research trends were analyzed and prospected to provide further theoretical support for the research of JPEG image blind forensics technology.
文摘The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.
文摘A new instrument based on light projection and image analysis techniques for assessing fabric pilling is presented. This system can automatically detect the pills from the successive sections of the fabric surface, which can make up for the limitation of both the gray level image -analysis techniques and laser triangulab’on techniques. The test of a large number of worsted wool fabric samples shows that it can objectively characterize the degree of pilling by using fuzzy sets and has good accordance with human visual inspection.
文摘Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves.
基金Supported by the National Natural Science Foundation of China(Nos.60971133,61271112)
文摘The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR images is extremely difficult.We presented a method which combines multi-atlas image segmentation with extreme learning machine based bias detection and correction technique to achieve a fully automatic segmentation of hippocampal subfields.Symmetric diffeomorphic registration driven by symmetric mutual information energy was implemented in atlas registration,which allows multi-modal image registration and accelerates execution time.An exponential function based label fusion strategy was proposed for the normalized similarity measure case in segmentation combination,which yields better combination accuracy.The test results show that this method is effective,especially for the larger subfields with an overlap of more than 80%,which is competitive with the current methods and is of potential clinical significance.
文摘Radio astronomy radio telescope plays the role of a linear operator, affecting the function that describes the object of research, formation of image of a monitored object. This paper presents methods for reconstruction and correction of solar radio images using the algorithm of rejections, the updated Weiner-filter, and the method CLEAN designed by Hegbomom (Pseudonym, 2009) for point sources. It is the process of numerical convolution in signal handling, an algorithm for separating weak-contrast formations on the solar which represents most points of the actual limb by using the ellipse equation. Consequently, the filling algorithm is applied by moving from the center to the ellipse points and filling each point by solar image data. Finally, a linear limb-darkening expression is used to remove the limb darkening. Different examples of the intermediate and final results are presented in addition to the developed algorithm.
基金financially supported by the National Natural Science Foundation of China (No.51934003)the Major Science and Technology Special Project of Yunnan Province,China(Nos.202102AF080001 and 202102AG050024)。
文摘The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent.The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types:tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.
文摘Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection.