One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object...One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.展开更多
Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p...Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.展开更多
There are complex river-lake systems in the Taihu Lake catchment with total water surface area of 6174.7 km2, and population density of 1079/km2, including Taihu Lake water surface area of 2338 km2. The water systems ...There are complex river-lake systems in the Taihu Lake catchment with total water surface area of 6174.7 km2, and population density of 1079/km2, including Taihu Lake water surface area of 2338 km2. The water systems in this catchment have healthy aquaecosystems during long history. However, in some riverlets in this catchment the water quality was estimated as “acute toxicity for higher organisms” and over standards for many heavy metal elements content;there were no any living plants and macro organisms in the water body, because there were developed a series of industry with abundant release of heavy metals and difficult decomposition organic chemical components along the riverlets during last decades. The even more serious situation was observed in sediments of the riverlets. How to restore such riverlet into a healthy aquaeosystem with abound plants and higher organisms? The main strategy and techniques are described in this paper as summarizing a report of engineering in a riverlet in Wuxi New District during last years, which leads to restore the aquaecosystem into a healthy one with abundant surface plant cultured on floating islands and observed living fish, lobster, frog, toad, mollusk and others in the riverlet. The main techniques are: 1) softwall buffer technic;2) floating eco-island technic by using which can culture any plant which can be cultured in solution;3) immobilized nitrogen cycle bacteria (INCB) technic;4) tattering esters and other big-molecule organic chemicals by using electronic pulse technic and photosensitization technic;5) mist spray facility technic for improving dissolved oxygen in deep water layers;6) technic for buffering and suppressing H2S release from water;7) the appropriate portion of surface with cultured plant to the total water surface area is about 1/3;8) Cress [Oenanthe Ljavanica (Bl.) DC.] and Myriophyllum verticilatum L. may be cultured in Taihu Lake catchment during the whole year as main plants with mosaic combination of other supplement plants in different seasons.展开更多
The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?obs...The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?observed?in?the?same direction to this system with SE-NW trend. The results show that kaolinite alteration trend with Argilic and propylitic veins?is the?same direction with SW-NE faults in this area. Therefore, these faults with these trends can be considered as the mineralization control for determination of the alterations. Different image processing techniques,?such as false color composite?(FCC), band ratios, color ratio composite?(CRC), principal component?analysis?(PCA), Crosta technique, supervised spectral angle mapping?(SAM), are used for?identification of the alteration zones associated with copper mineralization. In this project ASTER?data are process and spectral analysis to fit for recognizing intensity and kind of argillic, propylitic,?philic, and ETM+ data?which?are process and to fit for iron oxide and relation to metal mineralization of the area. For recognizing different alterations of the study area, some chemical and mineralogical analysis data from the samples showed that ASTER data and ETM+ data were?capable of hydrothermal alteration mapping with copper mineralization.?Copper mineralization in the region is in agreement with argillic alteration. SW-NE trending faults controlled the mineralization process.展开更多
Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience...Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.展开更多
Isolated power converters have emerged as an active research topic in power integrated circuit(IC)design.Reflecting this growing interest,ISSCC 2025 has featured a dedicated session on"Isolated Power and Gate Dri...Isolated power converters have emerged as an active research topic in power integrated circuit(IC)design.Reflecting this growing interest,ISSCC 2025 has featured a dedicated session on"Isolated Power and Gate Drivers".These converters enable safe and reliable power delivery across voltage domains and are widely used in renewable energy,electric vehicles,and telecommunications.Galvanic isolation prevents surge currents and ground loop issues in harsh high-voltage environments.As demand grows for compact,efficient,and high–power-density solutions,fully integrated architectures featuring on-chip transformers are increasingly favored over traditional module-based designs,offering>5 kV isolation with a smaller footprint and lower system cost[1].展开更多
High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse do...High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse domains,ranging from internet of things(IoT)to embodied artificial intelligence systems.Achieving high precision necessitates various circuit techniques including high-performance amplifiers and advanced calibration schemes.Furthermore,the evolution of ADC architectures has gradually elevated the significance of peripheral circuitry co-design in optimizing system-level performance metrics.In ISSCC 2025,several techniques are proposed to address these challenges.展开更多
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy...Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management.展开更多
Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,...Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.展开更多
The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizatio...The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin...This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We dis...Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.展开更多
This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have ...This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have been conducted along the 12,649 m of the Pahang-Selangor raw water transfer tunnel in Malaysia.Rock properties consisting of uniaxial compressive strength(UCS),Brazilian tensile strength(BTS),rock mass rating(RMR),rock quality designation(RQD),quartz content(q)and weathered zone as well as machine specifications including thrust force and revolution per minute(RPM)were measured to establish comprehensive datasets for optimization.Accordingly,to estimate the advance rate of TBM,two new hybrid optimization techniques,i.e.an artificial neural network(ANN)combined with both imperialist competitive algorithm(ICA)and particle swarm optimization(PSO),were developed for mechanical tunneling in granitic rocks.Further,the new hybrid optimization techniques were compared and the best one was chosen among them to be used for practice.To evaluate the accuracy of the proposed models for both testing and training datasets,various statistical indices including coefficient of determination(R^2),root mean square error(RMSE)and variance account for(VAF)were utilized herein.The values of R^2,RMSE,and VAF ranged in 0.939-0.961,0.022-0.036,and 93.899-96.145,respectively,with the PSO-ANN hybrid technique demonstrating the best performance.It is concluded that both the optimization techniques,i.e.PSO-ANN and ICA-ANN,could be utilized for predicting the advance rate of TBMs;however,the PSO-ANN technique is superior.展开更多
Water quality is a critical global issue,especially in urban and semi-urban regions where natural and anthropogenic factors significantly influence surface water systems.This study evaluates the hydrochemical characte...Water quality is a critical global issue,especially in urban and semi-urban regions where natural and anthropogenic factors significantly influence surface water systems.This study evaluates the hydrochemical characteristics of surface water in the North of Tehran Rivers(NTRs),an essential water resource in a rapidly urbanizing region,using advanced clustering techniques,including Hierarchical Clustering Analysis(HCA),Fuzzy CMeans(FCM),Genetic Algorithm Fuzzy C-Means(GAFCM),and Self-Organizing Map(SOM).The research aims to address the scientific challenge of understanding spatial and temporal variability in water quality,focusing on physicochemical parameters,hydrochemical facies,and contamination sources.Water samples from six rivers collected over four seasons in 2020 were analyzed and classified into distinct clusters based on their chemical composition,revealing significant seasonal and spatial differences.Results showed that FCM and GAFCM consistently categorized the NTRs into two clusters during winter and spring and three in summer and autumn.These findings were supported by HCA and SOM,which identified clusters corresponding to specific river segments and contamination levels.The primary hydrochemical processes identified were mineral dissolution and weathering,with calcite,dolomite,and aragonite significantly influencing water chemistry.Additionally,human activities,such as wastewater discharge,were shown to contribute to elevated sulfate,nitrate,and phosphate concentrations,further corroborated by microbial analyses.By integrating HCA,FCM,and GAFCM with an artificial neural network(ANN)-based clustering method(SOM),this study provides a robust framework for evaluating surface water quality.The findings,supported by Gibbs diagrams,Hounslow ion ratio,and saturation indices,highlight the dominance of rock weathering and human impacts in shaping the hydrochemical dynamics of the NTRs.These insights contribute to the scientific understanding of water quality dynamics and offer practical guidance for sustainable water resource management and environmental protection in developing urban areas.展开更多
The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based t...The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.展开更多
BACKGROUND Difficult total hip replacements(THRs)are hip arthroplasties performed on patients with compromised or severely altered bone or soft tissue.Difficult THR indications are common in low-income countries,where...BACKGROUND Difficult total hip replacements(THRs)are hip arthroplasties performed on patients with compromised or severely altered bone or soft tissue.Difficult THR indications are common in low-income countries,where access to care is often delayed.In these contexts,patients generally consult us with severe impairments that require significant technical adaptations,as well as adaptation to available resources and local conditions.AIM To describe the results and difficulties encountered following difficult THR in the study center.METHODS This bi-centric retrospective study was conducted over a 10-year period(2013-2023)and included 50 patients operated on for difficult THR.The mean age of the patients was 37.8 years.Surgical difficulties were recorded from operative reports,and the strategies employed to overcome these difficulties were analyzed,taking into account the types of implants used.RESULTS At last follow-up,functional results were considered good to excellent according to the Postel-Merle d'Aubignéscore,with significant improvement after surgery(P<0.005).Mean operative time was 177 minutes(range:90-290 minutes),with a mean blood loss of 568 mL(range:200-900 mL).The short-term and medium-term post-operative complication rate was 6%.CONCLUSION Even in difficult conditions,THR can produce favorable results through careful planning,adaptation of techniques and targeted approaches to overcoming challenges.展开更多
The application of Information and Communication Technologies has transformed traditional Teaching and Learning in the past decade to computerized-based era. This evolution has resulted from the emergence of the digit...The application of Information and Communication Technologies has transformed traditional Teaching and Learning in the past decade to computerized-based era. This evolution has resulted from the emergence of the digital system and has greatly impacted on the global education and socio-cultural development. Multimedia has been absorbed into the education sector for producing a new learning concept and a combination of educational and entertainment approach. This research is concerned with the application of Window Speech Recognition and Microsoft Visual Basic 2008 Integrated/Interactive Development Environment in Multimedia-Assisted Courseware prototype development for Primary School Mathematics contents, namely, single digits and the addition. The Teaching and Learning techniques—Explain, Instruct and Facilitate are proposed and these could be viewed as instructors’ centered strategy, instructors’—learners’ dual communication and learners' active participation. The prototype is called M-EIF and deployed only users' voices;hence the activation of Window Speech Recognition is required prior to a test run.展开更多
The radioactivity measurements in food crops and their diet derivatives and farm soil samples from Abeokuta, one of the elevated background radiation areas in Nigeria have been carried out in order to determine the co...The radioactivity measurements in food crops and their diet derivatives and farm soil samples from Abeokuta, one of the elevated background radiation areas in Nigeria have been carried out in order to determine the concentration levels of natural radionuclides (40K, 226Ra and 232Th). The activity concentrations of the natural radionuclides in the samples were determined via gamma-ray spectrometry using a 76 mm × 76 mm NaI(Tl) detector. Different common food crops representing the major sources of dietary requirements to the local population were collected for the measurements. The collected food crops were prepared into their different derivable composite diets using preparation techniques locale to the population. Using available food consumption data and the activity concentrations of the radionuclides, the ingestion effective doses were evaluated for the food crops and diet types per preparation techniques. For the tuberous food crop samples, the annual ingestion effective doses in the raw and different composite diets were 0.02 - 0.04 μSv and cumulatively 0.04 - 0.05 μSv while in the non-tuberous crops the doses were 0.44 - 0.70 μSv and cumulatively greater than 1 μSv respectively. Results of the study indicate that method of diet preparation is seen to play a major role in population ingestion dose reduction especially for tuberous crops than in non-tuberous crops. The study also showed that more ingestion dose could be incurred in diets prepared by roasting techniques. The result of the study will serve as a useful radiometric data for future epidemiological studies in the area and for food safety regulations and policy implementations in the country.展开更多
基金Supported by the National Natural Science Foundation of China(42474239,41204128)China National Space Administration(Pre-research project on Civil Aerospace Technologies No.D010301)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA17010303)。
文摘One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.
基金Djordje Spasojevic and Svetislav Mijatovic acknowledge the support from the Ministry of Science,TechnologicalDevelopment and Innovation of the Republic of Serbia(Agreement No.451-03-65/2024-03/200162)S.J.ibid.(Agreement No.451-03-65/2024-03/200122)Bosiljka Tadic from the Slovenian Research Agency(program P1-0044).
文摘Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.
文摘There are complex river-lake systems in the Taihu Lake catchment with total water surface area of 6174.7 km2, and population density of 1079/km2, including Taihu Lake water surface area of 2338 km2. The water systems in this catchment have healthy aquaecosystems during long history. However, in some riverlets in this catchment the water quality was estimated as “acute toxicity for higher organisms” and over standards for many heavy metal elements content;there were no any living plants and macro organisms in the water body, because there were developed a series of industry with abundant release of heavy metals and difficult decomposition organic chemical components along the riverlets during last decades. The even more serious situation was observed in sediments of the riverlets. How to restore such riverlet into a healthy aquaeosystem with abound plants and higher organisms? The main strategy and techniques are described in this paper as summarizing a report of engineering in a riverlet in Wuxi New District during last years, which leads to restore the aquaecosystem into a healthy one with abundant surface plant cultured on floating islands and observed living fish, lobster, frog, toad, mollusk and others in the riverlet. The main techniques are: 1) softwall buffer technic;2) floating eco-island technic by using which can culture any plant which can be cultured in solution;3) immobilized nitrogen cycle bacteria (INCB) technic;4) tattering esters and other big-molecule organic chemicals by using electronic pulse technic and photosensitization technic;5) mist spray facility technic for improving dissolved oxygen in deep water layers;6) technic for buffering and suppressing H2S release from water;7) the appropriate portion of surface with cultured plant to the total water surface area is about 1/3;8) Cress [Oenanthe Ljavanica (Bl.) DC.] and Myriophyllum verticilatum L. may be cultured in Taihu Lake catchment during the whole year as main plants with mosaic combination of other supplement plants in different seasons.
文摘The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?observed?in?the?same direction to this system with SE-NW trend. The results show that kaolinite alteration trend with Argilic and propylitic veins?is the?same direction with SW-NE faults in this area. Therefore, these faults with these trends can be considered as the mineralization control for determination of the alterations. Different image processing techniques,?such as false color composite?(FCC), band ratios, color ratio composite?(CRC), principal component?analysis?(PCA), Crosta technique, supervised spectral angle mapping?(SAM), are used for?identification of the alteration zones associated with copper mineralization. In this project ASTER?data are process and spectral analysis to fit for recognizing intensity and kind of argillic, propylitic,?philic, and ETM+ data?which?are process and to fit for iron oxide and relation to metal mineralization of the area. For recognizing different alterations of the study area, some chemical and mineralogical analysis data from the samples showed that ASTER data and ETM+ data were?capable of hydrothermal alteration mapping with copper mineralization.?Copper mineralization in the region is in agreement with argillic alteration. SW-NE trending faults controlled the mineralization process.
基金supported by the National Natural Science Foundation of China,No.31760290,82160688the Key Development Areas Project of Ganzhou Science and Technology,No.2022B-SF9554(all to XL)。
文摘Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20353.
文摘Isolated power converters have emerged as an active research topic in power integrated circuit(IC)design.Reflecting this growing interest,ISSCC 2025 has featured a dedicated session on"Isolated Power and Gate Drivers".These converters enable safe and reliable power delivery across voltage domains and are widely used in renewable energy,electric vehicles,and telecommunications.Galvanic isolation prevents surge currents and ground loop issues in harsh high-voltage environments.As demand grows for compact,efficient,and high–power-density solutions,fully integrated architectures featuring on-chip transformers are increasingly favored over traditional module-based designs,offering>5 kV isolation with a smaller footprint and lower system cost[1].
文摘High-precision analog-to-digital converters(ADCs)serve as fundamental components in modern electronic systems,bridging physical analog world and digital intelligence.They find ubiquitous applications across diverse domains,ranging from internet of things(IoT)to embodied artificial intelligence systems.Achieving high precision necessitates various circuit techniques including high-performance amplifiers and advanced calibration schemes.Furthermore,the evolution of ADC architectures has gradually elevated the significance of peripheral circuitry co-design in optimizing system-level performance metrics.In ISSCC 2025,several techniques are proposed to address these challenges.
基金partly supported by the University of Malaya Impact Oriented Interdisci-plinary Research Grant under Grant IIRG008(A,B,C)-19IISS.
文摘Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management.
基金FEDER/Ministry of Science and Innovation-State Research Agency/Project PID2020-112667RB-I00 funded by MCIN/AEI/10.13039/501100011033the Basque Government,IT1726-22+2 种基金by the predoctoral contracts PRE_2022_2_0022 and EP_2023_1_0015 of the Basque Governmentpartially supported by the Italian MIUR,PRIN 2020 Project“COMMON-WEARS”,N.2020HCWWLP,CUP:H23C22000230005co-funding from Next Generation EU,in the context of the National Recovery and Resilience Plan,through the Italian MUR,PRIN 2022 Project”COCOWEARS”(A framework for COntinuum COmputing WEARable Systems),N.2022T2XNJE,CUP:H53D23003640006.
文摘Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2504).
文摘The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
文摘This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
文摘Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.
文摘This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have been conducted along the 12,649 m of the Pahang-Selangor raw water transfer tunnel in Malaysia.Rock properties consisting of uniaxial compressive strength(UCS),Brazilian tensile strength(BTS),rock mass rating(RMR),rock quality designation(RQD),quartz content(q)and weathered zone as well as machine specifications including thrust force and revolution per minute(RPM)were measured to establish comprehensive datasets for optimization.Accordingly,to estimate the advance rate of TBM,two new hybrid optimization techniques,i.e.an artificial neural network(ANN)combined with both imperialist competitive algorithm(ICA)and particle swarm optimization(PSO),were developed for mechanical tunneling in granitic rocks.Further,the new hybrid optimization techniques were compared and the best one was chosen among them to be used for practice.To evaluate the accuracy of the proposed models for both testing and training datasets,various statistical indices including coefficient of determination(R^2),root mean square error(RMSE)and variance account for(VAF)were utilized herein.The values of R^2,RMSE,and VAF ranged in 0.939-0.961,0.022-0.036,and 93.899-96.145,respectively,with the PSO-ANN hybrid technique demonstrating the best performance.It is concluded that both the optimization techniques,i.e.PSO-ANN and ICA-ANN,could be utilized for predicting the advance rate of TBMs;however,the PSO-ANN technique is superior.
文摘Water quality is a critical global issue,especially in urban and semi-urban regions where natural and anthropogenic factors significantly influence surface water systems.This study evaluates the hydrochemical characteristics of surface water in the North of Tehran Rivers(NTRs),an essential water resource in a rapidly urbanizing region,using advanced clustering techniques,including Hierarchical Clustering Analysis(HCA),Fuzzy CMeans(FCM),Genetic Algorithm Fuzzy C-Means(GAFCM),and Self-Organizing Map(SOM).The research aims to address the scientific challenge of understanding spatial and temporal variability in water quality,focusing on physicochemical parameters,hydrochemical facies,and contamination sources.Water samples from six rivers collected over four seasons in 2020 were analyzed and classified into distinct clusters based on their chemical composition,revealing significant seasonal and spatial differences.Results showed that FCM and GAFCM consistently categorized the NTRs into two clusters during winter and spring and three in summer and autumn.These findings were supported by HCA and SOM,which identified clusters corresponding to specific river segments and contamination levels.The primary hydrochemical processes identified were mineral dissolution and weathering,with calcite,dolomite,and aragonite significantly influencing water chemistry.Additionally,human activities,such as wastewater discharge,were shown to contribute to elevated sulfate,nitrate,and phosphate concentrations,further corroborated by microbial analyses.By integrating HCA,FCM,and GAFCM with an artificial neural network(ANN)-based clustering method(SOM),this study provides a robust framework for evaluating surface water quality.The findings,supported by Gibbs diagrams,Hounslow ion ratio,and saturation indices,highlight the dominance of rock weathering and human impacts in shaping the hydrochemical dynamics of the NTRs.These insights contribute to the scientific understanding of water quality dynamics and offer practical guidance for sustainable water resource management and environmental protection in developing urban areas.
文摘The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.
文摘BACKGROUND Difficult total hip replacements(THRs)are hip arthroplasties performed on patients with compromised or severely altered bone or soft tissue.Difficult THR indications are common in low-income countries,where access to care is often delayed.In these contexts,patients generally consult us with severe impairments that require significant technical adaptations,as well as adaptation to available resources and local conditions.AIM To describe the results and difficulties encountered following difficult THR in the study center.METHODS This bi-centric retrospective study was conducted over a 10-year period(2013-2023)and included 50 patients operated on for difficult THR.The mean age of the patients was 37.8 years.Surgical difficulties were recorded from operative reports,and the strategies employed to overcome these difficulties were analyzed,taking into account the types of implants used.RESULTS At last follow-up,functional results were considered good to excellent according to the Postel-Merle d'Aubignéscore,with significant improvement after surgery(P<0.005).Mean operative time was 177 minutes(range:90-290 minutes),with a mean blood loss of 568 mL(range:200-900 mL).The short-term and medium-term post-operative complication rate was 6%.CONCLUSION Even in difficult conditions,THR can produce favorable results through careful planning,adaptation of techniques and targeted approaches to overcoming challenges.
文摘The application of Information and Communication Technologies has transformed traditional Teaching and Learning in the past decade to computerized-based era. This evolution has resulted from the emergence of the digital system and has greatly impacted on the global education and socio-cultural development. Multimedia has been absorbed into the education sector for producing a new learning concept and a combination of educational and entertainment approach. This research is concerned with the application of Window Speech Recognition and Microsoft Visual Basic 2008 Integrated/Interactive Development Environment in Multimedia-Assisted Courseware prototype development for Primary School Mathematics contents, namely, single digits and the addition. The Teaching and Learning techniques—Explain, Instruct and Facilitate are proposed and these could be viewed as instructors’ centered strategy, instructors’—learners’ dual communication and learners' active participation. The prototype is called M-EIF and deployed only users' voices;hence the activation of Window Speech Recognition is required prior to a test run.
文摘The radioactivity measurements in food crops and their diet derivatives and farm soil samples from Abeokuta, one of the elevated background radiation areas in Nigeria have been carried out in order to determine the concentration levels of natural radionuclides (40K, 226Ra and 232Th). The activity concentrations of the natural radionuclides in the samples were determined via gamma-ray spectrometry using a 76 mm × 76 mm NaI(Tl) detector. Different common food crops representing the major sources of dietary requirements to the local population were collected for the measurements. The collected food crops were prepared into their different derivable composite diets using preparation techniques locale to the population. Using available food consumption data and the activity concentrations of the radionuclides, the ingestion effective doses were evaluated for the food crops and diet types per preparation techniques. For the tuberous food crop samples, the annual ingestion effective doses in the raw and different composite diets were 0.02 - 0.04 μSv and cumulatively 0.04 - 0.05 μSv while in the non-tuberous crops the doses were 0.44 - 0.70 μSv and cumulatively greater than 1 μSv respectively. Results of the study indicate that method of diet preparation is seen to play a major role in population ingestion dose reduction especially for tuberous crops than in non-tuberous crops. The study also showed that more ingestion dose could be incurred in diets prepared by roasting techniques. The result of the study will serve as a useful radiometric data for future epidemiological studies in the area and for food safety regulations and policy implementations in the country.