Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating th...Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating this condition.Nevertheless,considering the vast amount of research that is currently being conducted,focusing on the utilization of TCM in the management of myopia,there is an urgent requirement for a thorough and comprehensive review.The review would serve to clarify the practical applications of TCM within this specific field,and it would also aim to elucidate the underlying mechanisms that are at play,providing a deeper understanding of how TCM principles can be effectively integrated into modern medical practices.Here,some modern medical pathogenesis of myopia and appropriate TCM techniques studies are summarized in the prevention and treatment of myopia.Further,we discussed the potential mechanisms and the future research directions of TCM against myopia.Identifying these mechanisms is crucial for understanding how TCM can be effectively utilized in this context.The combination of various TCM methods or the combination of traditional Chinese and Western medicine is of great significance for the prevention and control of myopia in the future.展开更多
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp...With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.展开更多
Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience...Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.展开更多
The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for...The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.展开更多
During the past decades,Li-ion batteries have been one of the most important energy storage devices.Large-scale energy storage requires Li-ion batteries which possess high energy density,low cost,and high safety.Other...During the past decades,Li-ion batteries have been one of the most important energy storage devices.Large-scale energy storage requires Li-ion batteries which possess high energy density,low cost,and high safety.Other than advanced battery materials,in-depth understanding of the intrinsic mechanism correlated with cell reaction is also essential for the development of high-performance Li-ion battery.Advanced characterization techniques,especially neutron-based techniques,have greatly promoted Li-ion battery researches.In this review,the characteristics or capabilities of various neutron-based characterization techniques,including elastic neutron scattering,quasi-elastic neutron scattering,neutron imaging,and inelastic neutron scattering,for the related Li-ion-battery researches are summarized.The design of in-situ/operando environment is also discussed.The comprehensive survey on neutron-based characterizations for mechanism understanding will provide guidance for the further study of high-performance Li-ion batteries.展开更多
Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applica...Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.展开更多
Given the energy demands of the electromobility market,the energy density and safety of lithium batteries(LBs)need to be improved,whereas its cost needs to be decreased.For the enhanced performance and decreased cost,...Given the energy demands of the electromobility market,the energy density and safety of lithium batteries(LBs)need to be improved,whereas its cost needs to be decreased.For the enhanced performance and decreased cost,more suitable electrode and electrolyte materials should be developed based on the improved understanding of the degradation mechanisms and structure–performance correlation in the LB system.Thus,various in situ characterization technologies have been developed during the past decades,providing abundant guidelines on the design of electrode and electrolyte materials.Here we first review the progress of in situ characterization of LBs and emphasize the feature of the multi-model coupling of different characterization techniques.Then,we systematically discuss how in situ characterization technologies reveal the electrochemical processes and fundamental mechanisms of different electrode systems based on representative electrode materials and electrolyte components.Finally,we discuss the current challenges,future opportunities,and possible directions to promote in situ characterization technologies for further improvement of the battery performance.展开更多
LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe...LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization.展开更多
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch...Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.展开更多
Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity...Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.展开更多
Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries,particularly for large-scale energy storage in power stations.Phosphate cathodes have garnere...Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries,particularly for large-scale energy storage in power stations.Phosphate cathodes have garnered significant research interest owing to their adjustable operation potential,electrochemical stability,high theoretical capacity,and environmental robustness.However,their application is impeded by various challenges,and research progress is hindered by unclear mechanisms.In this review,the various categories of phosphate materials as zinc-based battery cathodes are first summarized according to their structure and their corresponding electrochemical performance.Then,the current advances to reveal the Zn^(2+)storage mechanisms in phosphate cathodes by using advanced characterization techniques are discussed.Finally,some critical perspectives on the characterization techniques used in zinc-based batteries and the application potential of phosphates are provided.This review aims to guide researchers toward advanced characterization technologies that can address key challenges,thereby accelerating the practical application of phosphate cathodes in zinc-based batteries for large-scale energy storage.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scannin...Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scanning(Q-scanning)techniques offer notable advantages for various injectors owing to their inherent convenience and cost-effectiveness.However,their stringent approximation conditions lead to inevitable errors in practical operation,thereby limiting their widespread application.This study addressed these challenges by revisiting the analytical derivation procedure and investigating the effects of the underlying approximation conditions.Preliminary corrections were explored through a combination of data processing analysis and numerical simulations.Furthermore,based on theoretical derivations,virtual measurements using beam dynamics calculations were employed to evaluate the correction reliability.Subsequent experimental validations were performed at the Huazhong University of Science and Technology injector to verify the effectiveness of the proposed compensation method.Both the virtual and experimental results confirm the feasibility and reliability of the enhanced Q-scanning-based diagnosis for transverse emittance in typical beam injectors operating under common conditions.Through the integration of these corrections and compensations,enhanced Q-scanning-based techniques emerge as promising alternatives to traditional emittance diagnosis methods.展开更多
The traditional Chinese martial arts are the pride of the Chinese national specialties, but with the development of the western modem combat, some traditional martial arts bias appeared, such as the argument of the re...The traditional Chinese martial arts are the pride of the Chinese national specialties, but with the development of the western modem combat, some traditional martial arts bias appeared, such as the argument of the real fight of the traditional martial arts. This paper starts from the traditional historical origin, and analyzes the actual combat possibility of traditional martial arts to study the feasibility of the actual combat application of the traditional martial arts techniques in modem combat challenge.展开更多
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin...This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.展开更多
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed...With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.展开更多
Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we...Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.展开更多
CuO nanoparticles were successfully synthesized via a two-jet electrospun method,and then screen-printed on silver-carbon electrodes,forming CuO-modified Ag-C(CuO/Ag-C)disposable strip electrodes.In natural environmen...CuO nanoparticles were successfully synthesized via a two-jet electrospun method,and then screen-printed on silver-carbon electrodes,forming CuO-modified Ag-C(CuO/Ag-C)disposable strip electrodes.In natural environment condition for glucose detection,the obtained CuO/Ag-C electrodes show a high sensitivity of 540 nA·mM^(-1)·cm^(-2),and a low limit of detection(0.68 mM)in a wide linear response range of 0.68 mM and 3 mM(signal/noise=3),respectively.In addition,the CuO/Ag-C electrodes also exhibit excellent anti-interference,air stability and repeatability.As a result,the fabrication of CuO nanoparticles via an electrospun process and the technique of screen-printed electrodes are of great significance for glucose detection.展开更多
基金supported by Healthy China initiative of Traditional Chinese Medicine(No.889042).
文摘Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating this condition.Nevertheless,considering the vast amount of research that is currently being conducted,focusing on the utilization of TCM in the management of myopia,there is an urgent requirement for a thorough and comprehensive review.The review would serve to clarify the practical applications of TCM within this specific field,and it would also aim to elucidate the underlying mechanisms that are at play,providing a deeper understanding of how TCM principles can be effectively integrated into modern medical practices.Here,some modern medical pathogenesis of myopia and appropriate TCM techniques studies are summarized in the prevention and treatment of myopia.Further,we discussed the potential mechanisms and the future research directions of TCM against myopia.Identifying these mechanisms is crucial for understanding how TCM can be effectively utilized in this context.The combination of various TCM methods or the combination of traditional Chinese and Western medicine is of great significance for the prevention and control of myopia in the future.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509Development of security monitoring technology based network behavior against encrypted cyber threats in ICT convergence environment).
文摘With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.
基金supported by the National Natural Science Foundation of China,No.31760290,82160688the Key Development Areas Project of Ganzhou Science and Technology,No.2022B-SF9554(all to XL)。
文摘Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.
基金the National Natural Science Foundation of China (Grant nos.21233004,21303147 and 21473148,etc.)the National Key Research and Development Program (Grant no.2016YFB0901500)
文摘The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0401503)the National Materials Genome Project of China(Grant No.2016YFB0100106)the National Natural Science Foundation of China(Grant No.11675255)
文摘During the past decades,Li-ion batteries have been one of the most important energy storage devices.Large-scale energy storage requires Li-ion batteries which possess high energy density,low cost,and high safety.Other than advanced battery materials,in-depth understanding of the intrinsic mechanism correlated with cell reaction is also essential for the development of high-performance Li-ion battery.Advanced characterization techniques,especially neutron-based techniques,have greatly promoted Li-ion battery researches.In this review,the characteristics or capabilities of various neutron-based characterization techniques,including elastic neutron scattering,quasi-elastic neutron scattering,neutron imaging,and inelastic neutron scattering,for the related Li-ion-battery researches are summarized.The design of in-situ/operando environment is also discussed.The comprehensive survey on neutron-based characterizations for mechanism understanding will provide guidance for the further study of high-performance Li-ion batteries.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20170630)the National Natural Science Foundation of China(51802149 and U1801251)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Nanjing University Technology Innovation Fund Project。
文摘Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.
基金financially supported by the National Natural Science Foundation of China (Nos. 21820102002, 21931012, 22111530178, 51932001, 51872024, and 51972305)the Cooperation Fund of the Dalian National Laboratory for Clean Energy(DNL), Chinese Academy of Science (CAS) (No. DNL202020)+1 种基金the National Key Research and Development Program of China (No. 2018YFA0703503)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201623)
文摘Given the energy demands of the electromobility market,the energy density and safety of lithium batteries(LBs)need to be improved,whereas its cost needs to be decreased.For the enhanced performance and decreased cost,more suitable electrode and electrolyte materials should be developed based on the improved understanding of the degradation mechanisms and structure–performance correlation in the LB system.Thus,various in situ characterization technologies have been developed during the past decades,providing abundant guidelines on the design of electrode and electrolyte materials.Here we first review the progress of in situ characterization of LBs and emphasize the feature of the multi-model coupling of different characterization techniques.Then,we systematically discuss how in situ characterization technologies reveal the electrochemical processes and fundamental mechanisms of different electrode systems based on representative electrode materials and electrolyte components.Finally,we discuss the current challenges,future opportunities,and possible directions to promote in situ characterization technologies for further improvement of the battery performance.
基金the Science Achievement Scholarship of Thailand(SAST)for financial supportpartially supported by the Institute of Nanomaterials Research and Innovation for Energy(IN-RIE)+1 种基金the Research and Graduate Studies,Khon Kaen University(KKU)Synchrotron Light Research Institute(SLRI),Thailand。
文摘LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization.
基金supported by the U.S.National Science Foundation(2208972,2120559,and 2323117)
文摘Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.
基金the financial support from China Scholarship Council(202108080263)Financial support by the Federal Ministry of Education and Research(BMBF)under the project“He Na”(03XP0390C)+1 种基金the German Research Foundation(DFG)under the joint German-Russian DFG project“KIBSS”(448719339)are acknowledgedthe financial support from the Federal Ministry of Education and Research(BMBF)under the project“Ka Si Li”(03XP0254D)in the competence cluster“Excell Batt Mat”。
文摘Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.
基金National Natural Science Foundation of China(No.52270177)Natural Science Foundation of Shenyang(No.22-315-6-13)Fundamental Research Funds for the Central Universities(N2425035).
文摘Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries,particularly for large-scale energy storage in power stations.Phosphate cathodes have garnered significant research interest owing to their adjustable operation potential,electrochemical stability,high theoretical capacity,and environmental robustness.However,their application is impeded by various challenges,and research progress is hindered by unclear mechanisms.In this review,the various categories of phosphate materials as zinc-based battery cathodes are first summarized according to their structure and their corresponding electrochemical performance.Then,the current advances to reveal the Zn^(2+)storage mechanisms in phosphate cathodes by using advanced characterization techniques are discussed.Finally,some critical perspectives on the characterization techniques used in zinc-based batteries and the application potential of phosphates are provided.This review aims to guide researchers toward advanced characterization technologies that can address key challenges,thereby accelerating the practical application of phosphate cathodes in zinc-based batteries for large-scale energy storage.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
基金supported by the National Natural Science Foundation of China(Nos.12341501 and 11905074)。
文摘Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scanning(Q-scanning)techniques offer notable advantages for various injectors owing to their inherent convenience and cost-effectiveness.However,their stringent approximation conditions lead to inevitable errors in practical operation,thereby limiting their widespread application.This study addressed these challenges by revisiting the analytical derivation procedure and investigating the effects of the underlying approximation conditions.Preliminary corrections were explored through a combination of data processing analysis and numerical simulations.Furthermore,based on theoretical derivations,virtual measurements using beam dynamics calculations were employed to evaluate the correction reliability.Subsequent experimental validations were performed at the Huazhong University of Science and Technology injector to verify the effectiveness of the proposed compensation method.Both the virtual and experimental results confirm the feasibility and reliability of the enhanced Q-scanning-based diagnosis for transverse emittance in typical beam injectors operating under common conditions.Through the integration of these corrections and compensations,enhanced Q-scanning-based techniques emerge as promising alternatives to traditional emittance diagnosis methods.
文摘The traditional Chinese martial arts are the pride of the Chinese national specialties, but with the development of the western modem combat, some traditional martial arts bias appeared, such as the argument of the real fight of the traditional martial arts. This paper starts from the traditional historical origin, and analyzes the actual combat possibility of traditional martial arts to study the feasibility of the actual combat application of the traditional martial arts techniques in modem combat challenge.
文摘This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.
基金supported by the National Fund Cultivation Project from China People’s Police University(Grant Number:JJPY202402)National Natural Science Foundation of China(Grant Number:62172165).
文摘With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1602602 and 2023YFA1609600)the National Natural Science Foundation of China (Grant No. U23A20580)+3 种基金the open research fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN27)Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF004)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120020)the interdisciplinary program of Wuhan National High Magnetic Field Center at Huazhong University of Science and Technology (Grant No. WHMFC202132)。
文摘Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.
基金Funded by Cofoe Medical Technology Co.,Ltd and the Scientific Research Start-up Funds of Hexi University(No.KYQD2022006)。
文摘CuO nanoparticles were successfully synthesized via a two-jet electrospun method,and then screen-printed on silver-carbon electrodes,forming CuO-modified Ag-C(CuO/Ag-C)disposable strip electrodes.In natural environment condition for glucose detection,the obtained CuO/Ag-C electrodes show a high sensitivity of 540 nA·mM^(-1)·cm^(-2),and a low limit of detection(0.68 mM)in a wide linear response range of 0.68 mM and 3 mM(signal/noise=3),respectively.In addition,the CuO/Ag-C electrodes also exhibit excellent anti-interference,air stability and repeatability.As a result,the fabrication of CuO nanoparticles via an electrospun process and the technique of screen-printed electrodes are of great significance for glucose detection.