期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimization of Sentiment Analysis Using Teaching-Learning Based Algorithm
1
作者 Abdullah Muhammad Salwani Abdullah Nor Samsiah Sani 《Computers, Materials & Continua》 SCIE EI 2021年第11期1783-1799,共17页
Feature selection and sentiment analysis are two common studies that are currently being conducted;consistent with the advancements in computing and growing the use of social media.High dimensional or large feature se... Feature selection and sentiment analysis are two common studies that are currently being conducted;consistent with the advancements in computing and growing the use of social media.High dimensional or large feature sets is a key issue in sentiment analysis as it can decrease the accuracy of sentiment classification and make it difficult to obtain the optimal subset of the features.Furthermore,most reviews from social media carry a lot of noise and irrelevant information.Therefore,this study proposes a new text-feature selection method that uses a combination of rough set theory(RST)and teaching-learning based optimization(TLBO),which is known as RSTLBO.The framework to develop the proposed RSTLBO includes numerous stages:(1)acquiring the standard datasets(user reviews of six major U.S.airlines)which are used to validate search result feature selection methods,(2)preprocessing of the dataset using text processing methods.This involves applying text processing methods from natural language processing techniques,combined with linguistic processing techniques to produce high classification results,(3)employing the RSTLBO method,and(4)using the selected features from the previous process for sentiment classification using the Support Vector Machine(SVM)technique.Results show an improvement in sentiment analysis when combining natural language processing with linguistic processing for text processing.More importantly,the proposed RSTLBO feature selection algorithm is able to produce an improved sentiment analysis. 展开更多
关键词 Feature selection sentiment analysis rough set theory teachinglearning optimization algorithms text processing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部