期刊文献+
共找到498篇文章
< 1 2 25 >
每页显示 20 50 100
Effective Hybrid Teaching-learning-based Optimization Algorithm for Balancing Two-sided Assembly Lines with Multiple Constraints 被引量:8
1
作者 TANG Qiuhua LI Zixiang +2 位作者 ZHANG Liping FLOUDAS C A CAO Xiaojun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1067-1079,共13页
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ... Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS. 展开更多
关键词 two-sided assembly line balancing teaching-learning-based optimization algorithm variable neighborhood search positional constraints zoning constraints synchronism constraints
在线阅读 下载PDF
Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm 被引量:3
2
作者 D.Vidyabharathi V.Mohanraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2559-2573,共15页
For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over ti... For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset. 展开更多
关键词 Deep learning deep neural network(DNN) learning rates(LR) recurrent neural network(RNN) cyclical learning rate(CLR) hyperbolic tangent decay(HTD) toggle between hyperbolic tangent decay and triangular mode with restarts(T-HTR) teaching learning based optimization(tlbo)
在线阅读 下载PDF
Parameter Optimization of Amalgamated Al2O3-40% TiO2 Atmospheric Plasma Spray Coating on SS304 Substrate Using TLBO Algorithm
3
作者 Thankam Sreekumar Rajesh Ravipudi Venkata Rao 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第3期89-105,共17页
SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which sign... SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which significantly enhances the Mean Time Between Failure (MTBF). The final coating quality depends mainly on the coating thickness, surface roughness and hardness which ultimately decides the life. This paper presents an experimental study to effectively optimize the Atmospheric Plasma Spray (APS) process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO2 ceramic coatings to get the best quality of coating on commercial SS304 substrate. The experiments are conducted with a three-level L<sub>18</sub> Orthogonal Array (OA) Design of Experiments (DoE). Critical input parameters considered are: spray nozzle distance, substrate rotating speed, current of the arc, carrier gas flow and coating powder flow rate. The surface roughness, coating thickness and hardness are considered as the output parameters. Mathematical models are generated using regression analysis for individual output parameters. The Analytic Hierarchy Process (AHP) method is applied to generate weights for the individual objective functions and a combined objective function is generated. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is applied to the combined objective function to optimize the values of input parameters to get the best output parameters and confirmation tests are conducted based on that. The significant effects of spray parameters on surface roughness, coating thickness and coating hardness are studied in detail. 展开更多
关键词 Atmospheric Plasma Spray (APS) Coating SS304 Steel teaching learning based optimization (tlbo) Design of Experiments (DoE) Analytic Hierarchy Process (AHP) Al2O2-40% TiO3
在线阅读 下载PDF
Adaptive Barebones Salp Swarm Algorithm with Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis 被引量:1
4
作者 Jianfu Xia Hongliang Zhang +5 位作者 Rizeng Li Zhiyan Wang Zhennao Cai Zhiyang Gu Huiling Chen Zhifang Pan 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期240-256,共17页
The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning t... The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy. 展开更多
关键词 Salp swarm algorithm Bare bones Quasi-oppositional based learning Function optimizations Kernel extreme learning machine
在线阅读 下载PDF
An Experimental Investigation into the Amalgamated Al2O3-40% TiO2 Atmospheric Plasma Spray Coating Process on EN24 Substrate and Parameter Optimization Using TLBO
5
作者 Thankam Sreekumar Rajesh Ravipudi Venkata Rao 《Journal of Materials Science and Chemical Engineering》 2016年第6期51-65,共15页
Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a co... Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach. 展开更多
关键词 Atmospheric Plasma Spray (APS) EN24 Design of Experiments (DOE) teaching learning based optimization (tlbo) Analytic Hierarchy Process (AHP) Al2O3-40% TiO2
在线阅读 下载PDF
Distributed Byzantine-Resilient Learning of Multi-UAV Systems via Filter-Based Centerpoint Aggregation Rules
6
作者 Yukang Cui Linzhen Cheng +1 位作者 Michael Basin Zongze Wu 《IEEE/CAA Journal of Automatica Sinica》 2025年第5期1056-1058,共3页
Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication w... Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication with neighbors.In this work,we implement the stochastic gradient descent algorithm(SGD)distributedly to optimize tracking errors based on local state and aggregation of the neighbors'estimation.However,Byzantine agents can mislead neighbors,causing deviations from optimal tracking.We prove that the swarm achieves resilient convergence if aggregated results lie within the normal neighbors'convex hull,which can be guaranteed by the introduced centerpoint-based aggregation rule.In the given simulated scenarios,distributed learning using average,geometric median(GM),and coordinate-wise median(CM)based aggregation rules fail to track the target.Compared to solely using the centerpoint aggregation method,our approach,which combines a pre-filter with the centroid aggregation rule,significantly enhances resilience against Byzantine attacks,achieving faster convergence and smaller tracking errors. 展开更多
关键词 global optimization goals multi UAV systems filter based centerpoint aggregation distributed learning optimal target trackingby stochastic gradient descent algorithm sgd distributedly optimize tracking distributed machine learningmulti uav
在线阅读 下载PDF
基于TLBO算法的储能容量优化配置方法
7
作者 孙慧颖 李月乔 刘自发 《太阳能学报》 北大核心 2025年第9期333-341,共9页
提出一种基于教与学优化算法(TLBO)的储能容量优化配置方法。在考虑多因素对光伏出力影响的前提下,构建双层储能容量优化配置模型。上层以储能全寿命周期成本最小为目标函数,利用TLBO算法求解;下层以运行收益最大为目标函数,采用Gurobi... 提出一种基于教与学优化算法(TLBO)的储能容量优化配置方法。在考虑多因素对光伏出力影响的前提下,构建双层储能容量优化配置模型。上层以储能全寿命周期成本最小为目标函数,利用TLBO算法求解;下层以运行收益最大为目标函数,采用Gurobi求解器求解最优日运行策略。最后以大庆某实际光伏电站为例进行仿真,结果表明该方法的有效性。 展开更多
关键词 光伏发电 储能 优化 教与学算法(tlbo)
原文传递
Cost Effective Operating Strategy for Unit Commitment and Economic Dispatch of Thermal Power Plants with Cubic Cost Functions Using TLBO Algorithm
8
作者 E. B. Elanchezhian S. Subramanian S. Ganesan 《Journal of Power and Energy Engineering》 2015年第6期20-30,共11页
This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, ... This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, which makes it very hard to handle the corresponding mathematical models. However, Teaching Learning Based Optimization (TLBO) has reached a high efficiency, in terms of solution accuracy and computing time for such non convex problems. Hence, TLBO is applied for scheduling of generators with higher order cost characteristics, and turns out to be computationally solvable. In particular, we represent a model that takes into account the accurate higher order generator cost functions along with ramp limits, and turns to be more general and efficient than those available in the literature. The behavior of the model is analyzed through proposed technique on modified IEEE-24 bus system. 展开更多
关键词 CUBIC COST FUNCTIONS RAMP Rate teaching learning based optimization Unit COMMITMENT
在线阅读 下载PDF
基于TLBO-LIBSVM的联合收割机振动筛螺栓故障诊断 被引量:1
9
作者 李鹏程 顾新阳 +2 位作者 梁亚权 章浩 唐忠 《农机化研究》 北大核心 2025年第5期28-33,42,共7页
联合收割机振动筛工作时的瞬时冲击与交变载荷易导致振动筛螺栓结构发生失效。为解决联合收割机振动筛螺栓故障诊断问题,提出了一种基于多元特征融合TLBO-LIBSVM的振动筛螺栓失效故障诊断方法,通过提取特征矩阵,分别将时域特征、频域特... 联合收割机振动筛工作时的瞬时冲击与交变载荷易导致振动筛螺栓结构发生失效。为解决联合收割机振动筛螺栓故障诊断问题,提出了一种基于多元特征融合TLBO-LIBSVM的振动筛螺栓失效故障诊断方法,通过提取特征矩阵,分别将时域特征、频域特征、WOA-VMD能量熵特征组合归一化得到多元融合高维特征矩阵,导入经验参数LIBSVM模型,得到的成功率分别为64.44%、74.44%、81.11%、90%。结果表明:随着特征矩阵维数不断增加,失效特征信息不断完善,识别成功率不断提升,也验证了联合收割机振动筛螺栓频域特征敏感性高于时域特征。通过运用TLBO算法对LIBSVM模型超参数进行优化,得到最佳参数组合下的识别成功率为98.89%,完成了联合收割机振动筛螺栓失效故障的高精度识别,可为联合收割机振动筛螺栓故障的精确诊断提供参考。 展开更多
关键词 振动筛螺栓 变分模态分解 鲸鱼优化算法 支持向量机模型 教与学优化算法 故障诊断
在线阅读 下载PDF
A self-learning TLBO based dynamic economic/environmental dispatch considering multiple plug-in electric vehicle loads 被引量:8
10
作者 Zhile YANG Kang LI +2 位作者 Qun NIU Yusheng XUE Aoife FOLEY 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2014年第4期298-307,共10页
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operationa... Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements.These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints,such as the valve point effect,power balance and ramprate limits.The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times.In this paper,multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model.Self-learning teaching-learning based optimization(TLBO)is employed to solve the non-convex non-linear dispatch problems.Numerical results onwell-known benchmark functions,as well as test systems with different scales of generation units show the significance of the new scheduling method. 展开更多
关键词 Economic dispatch Environmental dispatch Plug-in electric vehicle SELF-learning teaching learning based optimization Peak charging Off-peak charging Stochastic charging
原文传递
改进TLBO的相关反馈图像检索方法 被引量:2
11
作者 毕晓君 潘铁文 《系统工程与电子技术》 EI CSCD 北大核心 2017年第10期2359-2367,共9页
针对当前基于进化算法的相关反馈图像检索方法无法很好地结合用户偏好信息和设置参数过多的问题,提出一种基于改进教与学优化的相关反馈图像检索方法。根据图像检索问题的特定环境,对教与学优化算法进行了一系列改进:首先,结合最近邻分... 针对当前基于进化算法的相关反馈图像检索方法无法很好地结合用户偏好信息和设置参数过多的问题,提出一种基于改进教与学优化的相关反馈图像检索方法。根据图像检索问题的特定环境,对教与学优化算法进行了一系列改进:首先,结合最近邻分类法构造适应度函数的约束条件,使之更好地反映用户偏好信息;其次,通过在教阶段将相关图像集的中心图像作为教师以及在学阶段将相关图像作为学员学习的对象,使算法快速收敛到相关图像区域;最后,结合约束处理技术Deb准则进行学员的选择操作。将该算法与目前效果优异的3种基于进化算法的相关反馈技术在两套标准图像测试集上进行对比。结果表明,所提算法相较于另外3种算法具有明显的优势,能更好地结合用户偏好信息提高图像检索性能。 展开更多
关键词 基于内容的图像检索 相关反馈 教与学优化算法 Deb准则
在线阅读 下载PDF
无线传感器网络节点OSFL-TLBO定位算法 被引量:9
12
作者 彭铎 王伟治 贠琦 《传感技术学报》 CAS CSCD 北大核心 2020年第3期443-449,共7页
定位技术对于无线传感器的应用是至关重要的,没有位置坐标的传感器节点信息是没有意义的。针对非测距的DV-Hop算法定位精度不高的问题,提出了一种新的基于反向蛙跳-教学优化(OSFL-TLBO)定位算法,以改进DV-Hop用平均跳距来代替欧式距离... 定位技术对于无线传感器的应用是至关重要的,没有位置坐标的传感器节点信息是没有意义的。针对非测距的DV-Hop算法定位精度不高的问题,提出了一种新的基于反向蛙跳-教学优化(OSFL-TLBO)定位算法,以改进DV-Hop用平均跳距来代替欧式距离时的累积误差问题和利用最小二乘法求解非线性方程时对初值敏感,受测量误差影响较大的问题。把无线传感器网络节点的定位问题转化为求解最优解的问题。仿真结果表明,所提算法的定位准确度提高大约10%~25%,有效的提高了定位精度。 展开更多
关键词 无线传感器网络 节点定位 反向学习 OSFL-tlbo算法
在线阅读 下载PDF
基于改进TLBO算法的模型自由飞气动参数辨识 被引量:1
13
作者 李飞 闵昌万 张鹏宇 《飞行力学》 CSCD 北大核心 2019年第5期81-86,96,共7页
针对传统气动参数辨识中使用的梯度下降寻优算法易于陷入局部最优解问题,首次提出了基于改进教与学优化的气动参数辨识算法。采用自适应教学因子达到前期快速搜索、后期深度挖掘的目的;'教'阶段,通过种群个体(学生)向最优个体(... 针对传统气动参数辨识中使用的梯度下降寻优算法易于陷入局部最优解问题,首次提出了基于改进教与学优化的气动参数辨识算法。采用自适应教学因子达到前期快速搜索、后期深度挖掘的目的;'教'阶段,通过种群个体(学生)向最优个体(教师)学习,保证算法快速聚集于真值附近;'学'阶段,通过种群个体之间相互学习,增加种群多样性,尽可能保证辨识结果的全局最优性。仿真结果表明,改进型教与学优化参数辨识算法可有效提高辨识精度,具有一定的工程应用推广价值。 展开更多
关键词 气动参数辨识 改进型教与学优化 粒子群优化算法 自适应遗传算法
原文传递
NTLBO算法优化ELM的SOC预测方法 被引量:5
14
作者 胡坚 刘超 《计量学报》 CSCD 北大核心 2022年第1期92-96,共5页
为提高锂电池荷电状态(SOC)预测的精度,提出了新型教与学优化(NTLBO)算法优化极限学习机的SOC预测方法。首先,采用Logistics混沌对种群中精英个体进行优化以改善算法的全局优化性能;其次,采用改进的TLBO算法优化调整ELM模型的输入权值... 为提高锂电池荷电状态(SOC)预测的精度,提出了新型教与学优化(NTLBO)算法优化极限学习机的SOC预测方法。首先,采用Logistics混沌对种群中精英个体进行优化以改善算法的全局优化性能;其次,采用改进的TLBO算法优化调整ELM模型的输入权值和隐含层阈值,构建NTLBO-ELM预测模型以提升模型的泛化能力。以某锰酸锂电池为研究对象对NTLBO-ELM模型进行测试验证并与其他3种模型相比较,结果表明提出的方法具有较小的预测误差和良好的泛化能力,验证了模型的有效性。 展开更多
关键词 计量学 荷电状态 锂电池 教与学优化 全局优化 极限学习机
在线阅读 下载PDF
基于TLBO的工程结构表面缺陷图像边缘检测方法 被引量:3
15
作者 曹绍林 蔡煜 +3 位作者 唐伟军 王家兴 汪小平 赵卫 《广州建筑》 2023年第6期114-117,共4页
非接触式、数字化的工程质量检测方法对于快速发现建筑结构表面缺陷,如裂缝、焊接缺陷等,降低工程质量检测的劳动强度具有重要的工程意义。本文在计算机数字图像处理技术基础上,根据建筑结构表面缺陷图像特征,提出基于TLBO算法的缺陷图... 非接触式、数字化的工程质量检测方法对于快速发现建筑结构表面缺陷,如裂缝、焊接缺陷等,降低工程质量检测的劳动强度具有重要的工程意义。本文在计算机数字图像处理技术基础上,根据建筑结构表面缺陷图像特征,提出基于TLBO算法的缺陷图像轮廓识别预处理方法,作为进一步缺陷特征判断的依据。本文在TLBO算法基础上,边缘像素点的搜索不需要设定任何算法参数,实现简单;提出基于的8个方向的灰度导数,建立图像边缘强度矩阵,将边缘点附近的小规模局部搜索和大量的全局搜索相结合,TLBO算法保证了所提出的边缘检测方法不会陷入局部边缘点,找到最重要的图像全局边缘特征;将TLBO算法应用于图像边缘检测,以工程质量检测中常见的钢结构焊缝检测为例加以验证和分析,证明了本文方法在缺陷图像轮廓识别预处理中的抗噪性和有效性。 展开更多
关键词 数字图像处理 表面缺陷 tlbo优化算法 灰度导数 图像边缘检测
在线阅读 下载PDF
基于FRTLBO-梯度增强算法的运载火箭总体优化设计
16
作者 李飞 闵昌万 +2 位作者 赤丰华 王颖 武猛 《飞行力学》 CSCD 北大核心 2020年第3期63-69,94,共8页
针对运载火箭设计过程中存在质量常值约束、尺寸不等式约束的问题,提出了一种基于FRTLBO-梯度增强算法的运载火箭总体优化设计方法。采用敏感度分析提取包含发动机、气动、质量、尺寸4个学科的运载火箭主要设计参数,建立基于CFD方法的... 针对运载火箭设计过程中存在质量常值约束、尺寸不等式约束的问题,提出了一种基于FRTLBO-梯度增强算法的运载火箭总体优化设计方法。采用敏感度分析提取包含发动机、气动、质量、尺寸4个学科的运载火箭主要设计参数,建立基于CFD方法的气动优化设计平台,优化出低阻运载火箭外形。仿真结果表明,FRTLBO-梯度增强算法优化算法较目前主流算法求解速度快、求解精度更高,运载器最优外形趋于Ⅰ子级直径与Ⅱ子级直径相等、Ⅲ子级直径略小且总长度为约束上界的气动布局形式。 展开更多
关键词 一体化设计 适应度排名教与学优化算法 梯度增强气动代理模型
原文传递
基于深度BPR+算法的不完全信息博弈环境下教学策略优化研究
17
作者 吕杰 《成都工业学院学报》 2026年第1期104-112,共9页
针对传统教育模式中策略优化效率低下和缺乏个性化学习推荐的挑战,提出一种基于深度BPR+算法的教学策略优化方法,旨在提升不完全信息博弈环境下的教育质量。通过构建不完全信息博弈模型,并将其与深度BPR+算法集成,所提出的模型能够有效... 针对传统教育模式中策略优化效率低下和缺乏个性化学习推荐的挑战,提出一种基于深度BPR+算法的教学策略优化方法,旨在提升不完全信息博弈环境下的教育质量。通过构建不完全信息博弈模型,并将其与深度BPR+算法集成,所提出的模型能够有效减轻信息不完整对博弈设置的影响。实验结果表明,深度BPR+算法在多项关键指标上显著优于传统方法:策略优化准确率达到85%,推荐覆盖率为92%,准确率、召回率和F1分别为87%、80%、0.835。此外,个性化推荐准确率、学生反馈满意度和用户黏性分别达到90%、95%、92%。所提出的模型在改善教学成果、培养学生自主性和推进个性化教学方法方面具有显著优势,为教育领域的质量提升提供了新的理论和实践支持。 展开更多
关键词 深度BPR+算法 非完全信息博弈 教学策略优化 个性化学习建议 教育质量提升
在线阅读 下载PDF
改进TLBO算法优化灰色神经网络的ORP预测 被引量:1
18
作者 刘烨 南新元 李志南 《自动化与仪表》 2016年第7期12-16,共5页
在生物氧化提金预处理过程中,由于传统的氧化还原电位预测方法精度不高,该文提出一种改进教与学优化算法(ATLBO)优化灰色神经网络的预测方法。在ATLBO算法中,采用多种群协同学习策略,有效地提高了算法的收敛速度和寻优精度。同时,对各... 在生物氧化提金预处理过程中,由于传统的氧化还原电位预测方法精度不高,该文提出一种改进教与学优化算法(ATLBO)优化灰色神经网络的预测方法。在ATLBO算法中,采用多种群协同学习策略,有效地提高了算法的收敛速度和寻优精度。同时,对各个子种群进行随机交叉操作,大大降低算法陷入局部最优的可能性。运用ATLBO算法优化灰色神经网络(GNN)的参数,并将最优解作为灰色神经网络的输入,对氧化还原电位进行预测。仿真结果表明,与其他预测方法相比,该预测模型能达到较好的预测精度,并且优于其他预测模型。 展开更多
关键词 改进教与学优化算法 随机交叉 多种群协同学习 灰色神经网络 氧化还原电位预测
在线阅读 下载PDF
改进TLBO算法求解绿色零等待流水线调度问题 被引量:1
19
作者 杜傲然 钱斌 +2 位作者 胡蓉 张长胜 王凌 《控制工程》 CSCD 北大核心 2019年第12期2218-2224,共7页
针对近年来严重的环境影响和越来越多的能量成本损耗所引发的绿色调度问题,提出了一种改进的基于"教"与"学"的优化算法,求解带序相关设置时间和释放时间的零等待流水线绿色调度问题,用于最小化能量成本。首先根据... 针对近年来严重的环境影响和越来越多的能量成本损耗所引发的绿色调度问题,提出了一种改进的基于"教"与"学"的优化算法,求解带序相关设置时间和释放时间的零等待流水线绿色调度问题,用于最小化能量成本。首先根据该调度问题的性质,设计了一种问题解的快速评价方法。其次在教师阶段,通过对成绩最差的学员或问题解进行Insert操作来提高种群的整体质量,同时提出一种自适应的教学因子,从而使算法的全局搜索能力得到改善。最后提出基于Insert邻域的策略来增强算法的局部搜索能力,有助于算法在全局和局部之间达到合理平衡。仿真实验和算法比较验证了该算法的有效性和鲁棒性。 展开更多
关键词 基于“教”与“学”的优化算法 零等待流水线绿色调度 序相关设置时间 释放时间
原文传递
一种新的结合奖励机制的ETLBO算法 被引量:1
20
作者 吴云鹏 崔佳旭 张永刚 《吉林大学学报(理学版)》 CAS 北大核心 2019年第6期1416-1424,共9页
通过对原ETLBO(elitist teaching-learning-based optimization)算法引入一种新的奖励机制,提出一种新的结合奖励机制的ETLBO-reward算法,并基于该算法提出一种简单自适应的精英个数算法RETLBO-reward,该算法保留了传统算法参数少、易... 通过对原ETLBO(elitist teaching-learning-based optimization)算法引入一种新的奖励机制,提出一种新的结合奖励机制的ETLBO-reward算法,并基于该算法提出一种简单自适应的精英个数算法RETLBO-reward,该算法保留了传统算法参数少、易实现、收敛快等优点,进一步提升了传统算法的收敛能力.对6个连续非线性优化问题的测试结果表明,这两种算法均具有良好的性能,求解效率较原ETLBO算法有明显提升. 展开更多
关键词 tlbo算法 奖励机制 自适应 连续非线性优化
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部