Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existin...Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework.展开更多
With the rapid development of artificial intelligence(AI)technology,its application in higher education has gradually shifted from traditional teaching aids to deeper levels of interactive learning and emotional conne...With the rapid development of artificial intelligence(AI)technology,its application in higher education has gradually shifted from traditional teaching aids to deeper levels of interactive learning and emotional connection support.AI can enhance teaching efficiency,personalized learning,and real-time feedback;however,in areas such as emotional communication and teacher-student interaction,AI still cannot fully replace the role of teachers.This study aims to explore the transformation of teacher-student relationships in the era of AI,analyze the impact of AI technology on teaching interaction,emotional support,and teacher-student trust,and propose strategies to address these challenges.The research findings indicate that while AI has significant advantages in improving educational efficiency,it has limitations in interpersonal emotional support and the transformation of the teacher’s role.To ensure the comprehensiveness and humanization of education,educators should strengthen emotional care and improve students’emotional literacy in the use of AI,and implement transparent data management and privacy protection measures to enhance teacher-student trust.The study also suggests that by enhancing teacher-student trust,strengthening emotional support,and increasing transparency,educators can effectively address the challenges of teacher-student relationships in the AI era.This research provides theoretical support and practical guidance for the integration of AI technology with educational humanistic care,promoting more comprehensive,personalized,and humane educational development.展开更多
This study investigated the role of intentional self-regulation and the moderating role of peer relationship in the relationship between teacher-student relationship and learning engagement.The study sample comprised ...This study investigated the role of intentional self-regulation and the moderating role of peer relationship in the relationship between teacher-student relationship and learning engagement.The study sample comprised 540 Chinese senior secondary school students between the ages of 15–18(51.67%boys;Mage=16.56 years;SDage=0.90).They completed surveys on the Teacher-Student Relationship Scale,the Selection,Optimization,and Compensation(SOC)Scale,the Peer Relationship Scale for Children and Adolescents,and the Learning Engagement Scale.The results following regression analysis showed that teacher-student relationship predicted higher learning engagement among senior secondary school students.Intentional self-regulation partially mediated the link between teacher-student relationship and learning engagement for higher learning engagement.Peer relationship moderated the relationships between teacher-student relationship and learning engagement and moderated the relationship between teacher-student relationship and intentional self-regulation for higher learning engagement.Thesefindings imply learning engagement can be enhanced by optimizing teacher-student relationship and strengthening intentional self-regulation interventions.展开更多
This study examined the impact of teacher-student relationship quality on students’risk of bullying victimiza-tion and the mediating roles of student-student relationships and student engagement in this relationship....This study examined the impact of teacher-student relationship quality on students’risk of bullying victimiza-tion and the mediating roles of student-student relationships and student engagement in this relationship.A total of 656 Chinese junior high school students(females=361,mean age=13.75,SD=0.98)completed validated measures of teacher-student relationship quality,student-student relationship quality,student engagement,and bullying victimization.Regression analysis results indicated that higher teacher-student relationship quality predicted a lower risk of student bullying victimization.Serial mediating effect testing of the student-student relationship quality and student engagement revealed that these factors fully mediated the relationship between teacher-student relationship quality and bullying victimization,resulting in a lower risk of bullying victimization.The results showed that student-student relationship quality had a more substantial mediating effect than student engagement.Thefindings support the Socio-Ecological Framework,suggesting that within the Microsystem,interactions between individuals and their immediate environments significantly impact their behavior.Specifically,thesefindings suggest that good teacher-student relationships can enhance the quality of student-student relationships and student engagement,thereby preventing and reducing the occurrence of bullying victimization.展开更多
Research in L2 writing assessment has overwhelmingly focused on helping students enhance their writing quality and global development in language proficiency by various means and approaches of assessment.However,studi...Research in L2 writing assessment has overwhelmingly focused on helping students enhance their writing quality and global development in language proficiency by various means and approaches of assessment.However,studies of the learning on the part of EFL writing teachers,especially when engaging in collaborative assessment with students,are few and far between.This qualitative case study therefore fills this void of foregoing research by examining the learning and development of a Chinese EFL writing teacher who employed teacher-student collaborative assessment(TSCA)(Wen,2016)in an L2 academic writing course.Drawing upon multiple types of data,three themes emerged with regard to the learning of the L2 writing teacher:1)becoming more assessment literate and capable of providing constructive feedback;2)gaining more efficacy in instructional tactics,student engagement and classroom management;and 3)developing a better understanding of students’evaluation focus as well as their needs and expertise in writing.This study offers a robust picture of how TSCA can foster multidimensional teacher learning-cognitively,affectively,and relationally-affirming its value not only as an assessment tool but as a transformative pedagogical practice.展开更多
Efficiently tracking and imaging interested moving targets is crucial across various applications,from autonomous systems to surveillance.However,persistent challenges remain in various fields,including environmental ...Efficiently tracking and imaging interested moving targets is crucial across various applications,from autonomous systems to surveillance.However,persistent challenges remain in various fields,including environmental intricacies,limitations in perceptual technologies,and privacy considerations.We present a teacher-student learning model,the generative adversarial network(GAN)-guided diffractive neural network(DNN),which performs visual tracking and imaging of the interested moving target.The GAN,as a teacher model,empowers efficient acquisition of the skill to differentiate the specific target of interest in the domains of visual tracking and imaging.The DNN-based student model learns to master the skill to differentiate the interested target from the GAN.The process of obtaining a GAN-guided DNN starts with capturing moving objects effectively using an event camera with high temporal resolution and low latency.Then,the generative power of GAN is utilized to generate data with position-tracking capability for the interested moving target,subsequently serving as labels to the training of the DNN.The DNN learns to image the target during training while retaining the target’s positional information.Our experimental demonstration highlights the efficacy of the GAN-guided DNN in visual tracking and imaging of the interested moving target.We expect the GAN-guided DNN can significantly enhance autonomous systems and surveillance.展开更多
The analysis of dissolved gas in oil can provide an important basis for transformer fault diagnosis.In order to improve the accuracy of transformer fault diagnosis,a method based on the relational teacher-student netw...The analysis of dissolved gas in oil can provide an important basis for transformer fault diagnosis.In order to improve the accuracy of transformer fault diagnosis,a method based on the relational teacher-student network(R-TSN)is proposed by analyzing the relationship between the dissolved gas in the oil and the fault type.R-TSN replaces the original hard labels with soft labels,and uses it to measure the similarity between different samples in the space,to a certain extent,it can obtain the hidden feature information in the samples,and clarify the classification boundary.Through the identification experiment,the effect of R-TSN diagnosis model is analyzed,and the influence of the compound fault of discharge and thermal on the diagnosis model is studied.This paper compares R-TSN with support vector machines(SVMs),decision trees and multilayer perceptron models in transformer fault diagnosis.Experimental results show that R-TSN has better performance than the above methods.After adding compound faults in the sample set,the accuracy rate can still reach 86.0%.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-r...This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-recorded online lessons between a math teacher and her students during the COVID-19 pandemic from April 11 to May 10,2022,four interactional segments are selected as the focus of the study.The results of the conversation analysis of the segments showed that students’modesty,lack of confidence,lack of ability,and network delay are the main factors affecting online teacher-student interaction.By encouraging students to answer questions,enlightening students to give answers,enriching students’answers,and entertaining the teaching atmosphere(“4Es”strategies),the teacher solved the problems successfully.The findings from this study can provide pedagogical experience and implications for practical teaching.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models...For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.展开更多
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving ...Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving you only look once version 5(YOLOv5) is proposed.By incorporating the lightweight Ghost Net module into the YOLOv5 backbone network,we effectively reduce the model size.The addition of the receptive fields block(RFB) module enhances feature extraction and improves the feature acquisition capability of the lightweight model.Subsequently,the high-performance lightweight convolution,GSConv,is integrated into the neck structure for further model size compression.Moreover,the baseline model's loss function is substituted with efficient insertion over union(EIoU),accelerating network convergence and enhancing detection precision.Experimental results corroborate the effectiveness of this improved algorithm in real-world traffic scenarios.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
基金supported by the National Natural Science Foundation of China,China (Grants No.62171232)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework.
基金The 2024 Higher Education Teaching Reform Project of Guangdong University of Science and Technology,“Teaching Practice of Human Resource Management Course Based on SPOC+FC Hybrid Teaching Mode”(GKZLGC2024024)。
文摘With the rapid development of artificial intelligence(AI)technology,its application in higher education has gradually shifted from traditional teaching aids to deeper levels of interactive learning and emotional connection support.AI can enhance teaching efficiency,personalized learning,and real-time feedback;however,in areas such as emotional communication and teacher-student interaction,AI still cannot fully replace the role of teachers.This study aims to explore the transformation of teacher-student relationships in the era of AI,analyze the impact of AI technology on teaching interaction,emotional support,and teacher-student trust,and propose strategies to address these challenges.The research findings indicate that while AI has significant advantages in improving educational efficiency,it has limitations in interpersonal emotional support and the transformation of the teacher’s role.To ensure the comprehensiveness and humanization of education,educators should strengthen emotional care and improve students’emotional literacy in the use of AI,and implement transparent data management and privacy protection measures to enhance teacher-student trust.The study also suggests that by enhancing teacher-student trust,strengthening emotional support,and increasing transparency,educators can effectively address the challenges of teacher-student relationships in the AI era.This research provides theoretical support and practical guidance for the integration of AI technology with educational humanistic care,promoting more comprehensive,personalized,and humane educational development.
文摘This study investigated the role of intentional self-regulation and the moderating role of peer relationship in the relationship between teacher-student relationship and learning engagement.The study sample comprised 540 Chinese senior secondary school students between the ages of 15–18(51.67%boys;Mage=16.56 years;SDage=0.90).They completed surveys on the Teacher-Student Relationship Scale,the Selection,Optimization,and Compensation(SOC)Scale,the Peer Relationship Scale for Children and Adolescents,and the Learning Engagement Scale.The results following regression analysis showed that teacher-student relationship predicted higher learning engagement among senior secondary school students.Intentional self-regulation partially mediated the link between teacher-student relationship and learning engagement for higher learning engagement.Peer relationship moderated the relationships between teacher-student relationship and learning engagement and moderated the relationship between teacher-student relationship and intentional self-regulation for higher learning engagement.Thesefindings imply learning engagement can be enhanced by optimizing teacher-student relationship and strengthening intentional self-regulation interventions.
基金supported by the 2024 Henan Province Philosophy and Social Science Planning Project(Youth Project)entitled“Research on the Mechanism and Intervention of Self-Regulated Learning in Promoting Children’s Chinese Reading Comprehension”(2024CJY070).
文摘This study examined the impact of teacher-student relationship quality on students’risk of bullying victimiza-tion and the mediating roles of student-student relationships and student engagement in this relationship.A total of 656 Chinese junior high school students(females=361,mean age=13.75,SD=0.98)completed validated measures of teacher-student relationship quality,student-student relationship quality,student engagement,and bullying victimization.Regression analysis results indicated that higher teacher-student relationship quality predicted a lower risk of student bullying victimization.Serial mediating effect testing of the student-student relationship quality and student engagement revealed that these factors fully mediated the relationship between teacher-student relationship quality and bullying victimization,resulting in a lower risk of bullying victimization.The results showed that student-student relationship quality had a more substantial mediating effect than student engagement.Thefindings support the Socio-Ecological Framework,suggesting that within the Microsystem,interactions between individuals and their immediate environments significantly impact their behavior.Specifically,thesefindings suggest that good teacher-student relationships can enhance the quality of student-student relationships and student engagement,thereby preventing and reducing the occurrence of bullying victimization.
文摘Research in L2 writing assessment has overwhelmingly focused on helping students enhance their writing quality and global development in language proficiency by various means and approaches of assessment.However,studies of the learning on the part of EFL writing teachers,especially when engaging in collaborative assessment with students,are few and far between.This qualitative case study therefore fills this void of foregoing research by examining the learning and development of a Chinese EFL writing teacher who employed teacher-student collaborative assessment(TSCA)(Wen,2016)in an L2 academic writing course.Drawing upon multiple types of data,three themes emerged with regard to the learning of the L2 writing teacher:1)becoming more assessment literate and capable of providing constructive feedback;2)gaining more efficacy in instructional tactics,student engagement and classroom management;and 3)developing a better understanding of students’evaluation focus as well as their needs and expertise in writing.This study offers a robust picture of how TSCA can foster multidimensional teacher learning-cognitively,affectively,and relationally-affirming its value not only as an assessment tool but as a transformative pedagogical practice.
基金supported by the National Natural Science Foundation of China(Grant Nos.62422509 and 62405188)the Shanghai Natural Science Foundation(Grant No.23ZR1443700)+3 种基金the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant No.23SG41)the Young Elite Scientist Sponsorship Program by CAST(Grant No.20220042)the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program(2021-2025 No.20).
文摘Efficiently tracking and imaging interested moving targets is crucial across various applications,from autonomous systems to surveillance.However,persistent challenges remain in various fields,including environmental intricacies,limitations in perceptual technologies,and privacy considerations.We present a teacher-student learning model,the generative adversarial network(GAN)-guided diffractive neural network(DNN),which performs visual tracking and imaging of the interested moving target.The GAN,as a teacher model,empowers efficient acquisition of the skill to differentiate the specific target of interest in the domains of visual tracking and imaging.The DNN-based student model learns to master the skill to differentiate the interested target from the GAN.The process of obtaining a GAN-guided DNN starts with capturing moving objects effectively using an event camera with high temporal resolution and low latency.Then,the generative power of GAN is utilized to generate data with position-tracking capability for the interested moving target,subsequently serving as labels to the training of the DNN.The DNN learns to image the target during training while retaining the target’s positional information.Our experimental demonstration highlights the efficacy of the GAN-guided DNN in visual tracking and imaging of the interested moving target.We expect the GAN-guided DNN can significantly enhance autonomous systems and surveillance.
基金supported by Open Fund of Beijing Key Laboratory of Research and System Evaluation of Dispatching Automation Technology,China Electric Power Research Institute(SGDK 0000DZQT2003377)。
文摘The analysis of dissolved gas in oil can provide an important basis for transformer fault diagnosis.In order to improve the accuracy of transformer fault diagnosis,a method based on the relational teacher-student network(R-TSN)is proposed by analyzing the relationship between the dissolved gas in the oil and the fault type.R-TSN replaces the original hard labels with soft labels,and uses it to measure the similarity between different samples in the space,to a certain extent,it can obtain the hidden feature information in the samples,and clarify the classification boundary.Through the identification experiment,the effect of R-TSN diagnosis model is analyzed,and the influence of the compound fault of discharge and thermal on the diagnosis model is studied.This paper compares R-TSN with support vector machines(SVMs),decision trees and multilayer perceptron models in transformer fault diagnosis.Experimental results show that R-TSN has better performance than the above methods.After adding compound faults in the sample set,the accuracy rate can still reach 86.0%.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
文摘This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-recorded online lessons between a math teacher and her students during the COVID-19 pandemic from April 11 to May 10,2022,four interactional segments are selected as the focus of the study.The results of the conversation analysis of the segments showed that students’modesty,lack of confidence,lack of ability,and network delay are the main factors affecting online teacher-student interaction.By encouraging students to answer questions,enlightening students to give answers,enriching students’answers,and entertaining the teaching atmosphere(“4Es”strategies),the teacher solved the problems successfully.The findings from this study can provide pedagogical experience and implications for practical teaching.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
基金supported by the Beijing Natural Science Foundation(Grant No.L223013)。
文摘For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
文摘Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving you only look once version 5(YOLOv5) is proposed.By incorporating the lightweight Ghost Net module into the YOLOv5 backbone network,we effectively reduce the model size.The addition of the receptive fields block(RFB) module enhances feature extraction and improves the feature acquisition capability of the lightweight model.Subsequently,the high-performance lightweight convolution,GSConv,is integrated into the neck structure for further model size compression.Moreover,the baseline model's loss function is substituted with efficient insertion over union(EIoU),accelerating network convergence and enhancing detection precision.Experimental results corroborate the effectiveness of this improved algorithm in real-world traffic scenarios.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.