The stable Bardeen-Schrieffer-Cooper(BCS)pairing state of a bosonic system has long been sought theoretically and experimentally.Here we propose that a stable BCS state of bosons can be realized in a binary Bose gas w...The stable Bardeen-Schrieffer-Cooper(BCS)pairing state of a bosonic system has long been sought theoretically and experimentally.Here we propose that a stable BCS state of bosons can be realized in a binary Bose gas with s-wave intra-species repulsion and an inter-species attraction in the mean-field-stable region.We find that above the Bose-Einstein condensation(BEC)transition temperature,there is a phase transition from the normal state to a BCS state driven by interspecies pairing.When the temperature decreases,another phase transition from the BCS state to a mixed state featuring both atomic BEC and inter-species pairing occurs.As the temperature is further lowered,the mixed state is eventually taken over by the pure BEC state.We present the phase diagram of this system and discuss its experimental implications.展开更多
The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the ran...The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the random phase approximation(RPA),we study the dynamical excitations of a two-dimensional attractive Fermi-Hubbard model by calculating its dynamical structure factor.Two distinct collective modes emerge:a Goldstone phonon mode at transferred momentum q=[0,0]and a roton mode at q=[p,p].The roton mode exhibits a sharp molecular peak in the low-energy regime.Notably,the area under the roton molecular peak scales with the square of the pairing gap,which holds even in three-dimensional and spin-orbit coupled(SOC)optical lattices.This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q=[p,p].展开更多
Recent various experiments have provided evidence supporting the emergence of loop-current order in kagome metals. Particularly superconductivity in AV_(3)Sb_(5) is significantly enhanced when this charge order is sup...Recent various experiments have provided evidence supporting the emergence of loop-current order in kagome metals. Particularly superconductivity in AV_(3)Sb_(5) is significantly enhanced when this charge order is suppressed by pressure or doping. Distinct from magnetic order, loop-current order does not couple directly to spin and thus whether such fluctuations can enhance superconductivity remains elusive. We design a sign problem-free bilayer kagome model coupled to quantum Ising spins through bond currents and perform determinant quantum Monte Carlo simulations to explore single-particle properties and superconductivity arising from 2 × 2 loopcurrent fluctuations. We find that this loop-current order induces intriguing band folding, band broadening,and gap opening around saddle points. Remarkably, our pairing susceptibility analysis identifies a dominant enhancement of superconductivity due to loop-current fluctuations, with the dominant pairing being the chiral d-wave channel. This pairing primarily occurs within the intra-sublattice channel and involves third nearestneighbor sites, attributed to the unique sublattice texture associated with van Hove singularities. We also discuss potential experimental implications for kagome superconductors.展开更多
The infection of SARS-CoV-2 has triggered the COVID-19 pandemic. In addition to the fever and respiratory symptoms in the process of coronavirus infections, gastrointestinal symptoms, especially diarrhea, are prominen...The infection of SARS-CoV-2 has triggered the COVID-19 pandemic. In addition to the fever and respiratory symptoms in the process of coronavirus infections, gastrointestinal symptoms, especially diarrhea, are prominent features of its acute infection and long COVID. The associations between the lung and large intestine have been demonstrated by Western medicine in aspects such as tissue origin, microflora homeostasis, mucosal immunity, renin-angiotensin system(RAS) and autonomic nervous system as well, which are considered as the evidence of material basis and potential regulatory mechanisms for “gutlung crosstalk(肺肠串扰)” in COVID-19. We have noticed that probiotics and other preparations can regulate the intestines, and further treat COVID-19 with effective and gratifying results. In the system of traditional Chinese medicine(TCM), there's a term of “exterior-interior pairing of the lung and large intestine(肺与大肠相表里)”, showing an interconnection of the lung and the bowels. “Exterior-interior pairing of the lung and large intestine” is an important part of the theory of visceral activities proposed by ancient physicians through a long-term observation and practice. It's considered that “lung” and “large intestine” are interconnected and mutually exterior-interior in the normal physical activities and the disease development, providing a theoretical basis for treating lung diseases and bowel diseases from the perspective of overall concept. The study aims to compare the term of “exterior-interior pairing of the lung and large intestine” in TCM and “gut-lung crosstalk” in Western medicine regarding the development of COVID-19 and its intestinal symptoms, and provide more ideas for diagnosing and treating lung and bowel related diseases.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study...A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study the superconductingpairing behavior within the kagome-lattice Hubbard model through the constrained path Monte Carlo method.It isfound that doping around the Dirac point generates a dominant next-nearest-neighbor-d pairing symmetry driven by on-siteCoulomb interaction U.However,when considering the nearest-neighbor interaction V,it may induce nearest-neighbor-ppairing to become the preferred pairing symmetry.Our results provide useful information to identify the dominant superconductingpairing symmetry in the AV_(3)Sb_(5)family.展开更多
By utilizing the fluctuation exchange approximation method,we perform a study on the superconducting pairing symmetry in a t_(2g) three-orbital model on the square lattice.Although the tight-binding parameters of the ...By utilizing the fluctuation exchange approximation method,we perform a study on the superconducting pairing symmetry in a t_(2g) three-orbital model on the square lattice.Although the tight-binding parameters of the model are based on Sr_(2)RuO_(4),we have systematically studied the evolution of superconducting pairing symmetry with the carrier density and interactions,making our findings relevant to a broader range of material systems.Under a moderate Hund’s coupling,we find that spin fluctuations dominate the superconducting pairing,leading to a prevalent spin-singlet pairing with a d_(x^(2)-y^(2))-wave symmetry for the carrier density within the range of n=1.5-4 per site.By reducing the Hund’s coupling,the charge fluctuations are enhanced and play a crucial role in determining the pairing symmetry,leading to a transition of the pairing symmetry from the spin-singlet d_(x^(2)-y^(2))-wave to the spin-triplet p-wave.Furthermore,we find that the superconducting pairings are orbital dependent.As the carrier density changes from n=4 to n=1.5,the active orbitals for superconducting pairing shift from the quasi-two-dimensional orbital dxy to the quasi-one-dimensional orbitals d_(xz) and d_(yz).展开更多
Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pair...Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.展开更多
We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion ...We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.展开更多
In the new era,there is an urgent need to further promote pairing assistance to Xizang,promote the simultaneous construction of a strong agriculture in Xizang and the China's Mainland,and compose a Chinese-style m...In the new era,there is an urgent need to further promote pairing assistance to Xizang,promote the simultaneous construction of a strong agriculture in Xizang and the China's Mainland,and compose a Chinese-style modernization.Southern Xizang,located in the southeastern part of the Xizang Autonomous Region,includes Shannan City and Nyingchi City,is a region assisted by four provincial partners including Hubei Province.This paper introduces the agricultural environment in southern Xizang,studies its agricultural characteristics,and analyzes the main issues of its pairing assistance.Taking forging the strong consciousness of the Chinese national community as the main line,the paper explores strategies for promoting agricultural high-quality development in southern Xizang through pairing assistance to Xizang from the perspective of agricultural power,and proposes some strategies,such as inheriting agricultural cultural heritage,promoting the upgrading of modern seed industry,enhancing the characteristic advantages of highland barley(naked barley)and animal husbandry industries,and developing edible fungi and cold water fish industries.展开更多
It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for elec...It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for electrocatalytic HMF oxidative reaction(e-HMFOR)have been facing low Faradaic efficiency(FE)and high water splitting voltage.Herein,we propose a strategy of the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction by constructing a Co-Ni paired site,where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site,thus giving the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction superior electrocata lytic performances for e-HMFOR and water splitting.By optimizing conditions,the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction has high conversion of 99.7%,high selectivity of 99.9%,and high FE of 98.4%at 1.3 V,as well as low cell voltage of 1.31 V at 10 mA cm^(-2)in 1 M KOH+0.1 M HMF.This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H_(2)in an economical manner.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-represent...Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism.展开更多
Metamorphic mechanism has the advantages of variable topology and variable degrees of freedom, which can realize the requirements of multi-conditions and multi-tasks, and has a good application prospect. The configura...Metamorphic mechanism has the advantages of variable topology and variable degrees of freedom, which can realize the requirements of multi-conditions and multi-tasks, and has a good application prospect. The configuration transformation is prominent feature of the metamorphic mechanism. The number of constraints or properties of the kinematic pairs provided by the metamorphic kinematic pairs will change under certain conditions, its dynamic performance is much more complex than that of traditional kinematic pairs with immutable constraints. However, the clearance model about traditional kinematic pairs with immutable constraints established by long-term research is difficult to be directly applied to the metachromatic kinematic pairs. Referring to the experience of the traditional kinematic pairs with immutable constraints, the continuous contact model of Metamorphic Groove pin pair with clearance is established. According to the traditional continuous contact model of the kinematic pairs with immutable constraints, the forces between the elements of kinematic pair of the mechanism with clearance and the ideal mechanism without clearance are regarded as the same, and the inertia force and inertia moment of the components are also calculated according to the acceleration of the ideal mechanism. The clearance is regarded as a massless virtual bar with length r. For the rotating pair part, the massless virtual bar length r is the difference between the radius of the shaft and the hole, and for the sliding pair part, the massless virtual bar length r is half of the difference between the height of the slider and the guide groove. According to the new mechanism without gap after adding the imaginary bar, kinetic energy and potential energy of the system are calculated for the two configurations of mechanism with metamorphic Groove pin pair with clearance. The kinetic energy and potential energy of the system are calculated according to the new mechanism without clearance after adding the massless virtual bar. The kinetic energy, potential energy and generalized force are substituted into the Lagrangian equation to obtain the motion equation of the metamorphic mechanism, which lays the foundation for the dynamic performance study of the mechanism with metamorphic groove pin pair with clearance.展开更多
Decays of charmonium into hyperon and antihyperon pairs provide a pristine laboratory for exploring hyperon properties,such as their polarization and decay parameters,and for conducting tests of fundamental symmetries...Decays of charmonium into hyperon and antihyperon pairs provide a pristine laboratory for exploring hyperon properties,such as their polarization and decay parameters,and for conducting tests of fundamental symmetries.This brief review highlights the significant progress made in precise tests of CP symmetry at BESIII using entangled hyperon-antihyperon pairs。展开更多
Sjögren’s syndrome(SS)is an autoimmune disease characterized primarily by oral and periocular dryness.Astragalus-Salvia(AS)and Ophiopogon-Dendrobium(OD)represent two frequently utilized herb pairs in SS treatmen...Sjögren’s syndrome(SS)is an autoimmune disease characterized primarily by oral and periocular dryness.Astragalus-Salvia(AS)and Ophiopogon-Dendrobium(OD)represent two frequently utilized herb pairs in SS treatment.While the combination of AS-OD herb pairs demonstrates clinical efficacy in alleviating SS symptoms,its underlying mechanism remains unclear.This investigation sought to assess the therapeutic effects and elucidate the potential mechanisms of AS-OD in non-obese diabetic(NOD)/Ltj mice with SS.The study utilized NOD/Ltj mice as SS models,administering AS-OD treatment for 10 weeks at doses of 113.1,226.2,and 339.3 mg·d−1·20 g−1.Results demonstrated that AS-OD improved SS symptoms,evidenced by enhanced salivary flow rate,decreased anti-SSA/Ro and anti-SSB/La antibody levels,increased swimming duration,and reduced lactate(LA)and blood urea nitrogen(BUN)levels in NOD/Ltj mice.AS-OD reduced lymphocyte infiltration,enhanced Aquaporin-5(AQP5)expression in the submandibular gland,decreased inflammatory cytokine levels in the submandibular gland,and reduced the T helper type 17/regulatory T lymphocyte(Th17/Treg)cell ratio in the spleen.Transcriptomic and proteomic analyses indicated AS-OD’s involvement in regulating phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)and Janus kinase 3/signal transducer and activator of transcription 3(JAK1/STAT3)pathways,with inhibitory effects validated in both NOD/Ltj mice submandibular gland and A-253 cells.Furthermore,AS-OD enhanced cell viability and reduced A-253 cell apoptosis through the PI3K/AKT pathway.In A-253 cells,AS-OD reduced inflammatory cytokine levels,CXC chemokine ligand 9/10(CXCL9/10),and T-cell chemotaxis by inhibiting the JAK1/STAT3 pathway.AS-OD mitigates SS by suppressing inflammation and immune responses through the PI3K/AKT and JAK1/STAT3 pathways.展开更多
A series of amine-bridged bis(phenolate)rare-earth(Sc,Y)aryloxides was synthesized and characterized.These complexes were successfully used for the controlled Lewis pair polymerization(LPP)of functional acrylamides in...A series of amine-bridged bis(phenolate)rare-earth(Sc,Y)aryloxides was synthesized and characterized.These complexes were successfully used for the controlled Lewis pair polymerization(LPP)of functional acrylamides in combination with phosphines,affording a new type of polyacrylamides with predictable molecular weight and low molecular weight distribution.The living nature of this LPP was verified by near-quantitative initiation efficiencies,a linear increase of molecular weight vs monomer-to-initiator ratio and monomer conversion,chain extensions,and the synthesis of well-defined block copolymers.The mechanistic studies were performed through the isolation of a zwitterionic intermediate as well as the end-chain analysis of oligomers,showcasing a rare-earth/phosphine cooperation.Furthermore,the resultant polyacrylamides exhibit outstanding thermal stability and great potential for application in photovoltaic devices.展开更多
The aim of this paper is to study an extended modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff(mKdV-CBS)equation and present its Lax pair with a spectral parameter.Meanwhile,a Miura transformation is explored...The aim of this paper is to study an extended modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff(mKdV-CBS)equation and present its Lax pair with a spectral parameter.Meanwhile,a Miura transformation is explored,which reveals the relationship between solutions of the extended mKdV-CBS equation and the extended(2+1)-dimensional Korteweg-de Vries(KdV)equation.On the basis of the obtained Lax pair and the existing research results,the Darboux transformation is derived,which plays a crucial role in presenting soliton solutions.In addition,soliton molecules are given by the velocity resonance mechanism.展开更多
文摘The stable Bardeen-Schrieffer-Cooper(BCS)pairing state of a bosonic system has long been sought theoretically and experimentally.Here we propose that a stable BCS state of bosons can be realized in a binary Bose gas with s-wave intra-species repulsion and an inter-species attraction in the mean-field-stable region.We find that above the Bose-Einstein condensation(BEC)transition temperature,there is a phase transition from the normal state to a BCS state driven by interspecies pairing.When the temperature decreases,another phase transition from the BCS state to a mixed state featuring both atomic BEC and inter-species pairing occurs.As the temperature is further lowered,the mixed state is eventually taken over by the pure BEC state.We present the phase diagram of this system and discuss its experimental implications.
基金supported by the National Natural Science Foundation of China[Grant Nos.U23A2073(P.Z.)and 11547034(H.Z.)].
文摘The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the random phase approximation(RPA),we study the dynamical excitations of a two-dimensional attractive Fermi-Hubbard model by calculating its dynamical structure factor.Two distinct collective modes emerge:a Goldstone phonon mode at transferred momentum q=[0,0]and a roton mode at q=[p,p].The roton mode exhibits a sharp molecular peak in the low-energy regime.Notably,the area under the roton molecular peak scales with the square of the pairing gap,which holds even in three-dimensional and spin-orbit coupled(SOC)optical lattices.This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q=[p,p].
基金supported by the National Natural Science Foundation of China (Grant No. 12447103)financial support from the MERIT-WINGS course provided by the University of Tokyo+10 种基金the Fellowship for Integrated Materials Science and Career Development provided by the Japan Science and Technology Agencysupport from the computational resource of Wisteria/BDEC-01 provided by Information Technology Center, the University of Tokyo, for the Monte Carlo simulationthe support by the National Natural Science Foundation of China (Grant No. 12404275)the Fundamental Research Program of Shanxi Province (Grant No. 202403021212015)support from the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter-ct.qmat (EXC 2147, Project No. 390858490)supported by the National Natural Science Foundation of China (Grant No. 12274289)the National Key R&D Program of China (Grant Nos. 2022YFA1402702 and 2021YFA1401400)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301902)Yangyang Development Fund, and Startup Funds from SJTUsupported by the National Key R&D Program of China (Grant No. 2023YFA1407300)the National Natural Science Foundation of China (Grant No. 12047503)。
文摘Recent various experiments have provided evidence supporting the emergence of loop-current order in kagome metals. Particularly superconductivity in AV_(3)Sb_(5) is significantly enhanced when this charge order is suppressed by pressure or doping. Distinct from magnetic order, loop-current order does not couple directly to spin and thus whether such fluctuations can enhance superconductivity remains elusive. We design a sign problem-free bilayer kagome model coupled to quantum Ising spins through bond currents and perform determinant quantum Monte Carlo simulations to explore single-particle properties and superconductivity arising from 2 × 2 loopcurrent fluctuations. We find that this loop-current order induces intriguing band folding, band broadening,and gap opening around saddle points. Remarkably, our pairing susceptibility analysis identifies a dominant enhancement of superconductivity due to loop-current fluctuations, with the dominant pairing being the chiral d-wave channel. This pairing primarily occurs within the intra-sublattice channel and involves third nearestneighbor sites, attributed to the unique sublattice texture associated with van Hove singularities. We also discuss potential experimental implications for kagome superconductors.
基金financed by the grant from the Fundamental Research Funds for the Central Universities (No. 2019-JYB-TD004)。
文摘The infection of SARS-CoV-2 has triggered the COVID-19 pandemic. In addition to the fever and respiratory symptoms in the process of coronavirus infections, gastrointestinal symptoms, especially diarrhea, are prominent features of its acute infection and long COVID. The associations between the lung and large intestine have been demonstrated by Western medicine in aspects such as tissue origin, microflora homeostasis, mucosal immunity, renin-angiotensin system(RAS) and autonomic nervous system as well, which are considered as the evidence of material basis and potential regulatory mechanisms for “gutlung crosstalk(肺肠串扰)” in COVID-19. We have noticed that probiotics and other preparations can regulate the intestines, and further treat COVID-19 with effective and gratifying results. In the system of traditional Chinese medicine(TCM), there's a term of “exterior-interior pairing of the lung and large intestine(肺与大肠相表里)”, showing an interconnection of the lung and the bowels. “Exterior-interior pairing of the lung and large intestine” is an important part of the theory of visceral activities proposed by ancient physicians through a long-term observation and practice. It's considered that “lung” and “large intestine” are interconnected and mutually exterior-interior in the normal physical activities and the disease development, providing a theoretical basis for treating lung diseases and bowel diseases from the perspective of overall concept. The study aims to compare the term of “exterior-interior pairing of the lung and large intestine” in TCM and “gut-lung crosstalk” in Western medicine regarding the development of COVID-19 and its intestinal symptoms, and provide more ideas for diagnosing and treating lung and bowel related diseases.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
基金supported by Beijing Natural Science Foundation(Grant No.1242022).The numerical simulations in this work were performed at HSCC of Beijing Normal University.
文摘A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study the superconductingpairing behavior within the kagome-lattice Hubbard model through the constrained path Monte Carlo method.It isfound that doping around the Dirac point generates a dominant next-nearest-neighbor-d pairing symmetry driven by on-siteCoulomb interaction U.However,when considering the nearest-neighbor interaction V,it may induce nearest-neighbor-ppairing to become the preferred pairing symmetry.Our results provide useful information to identify the dominant superconductingpairing symmetry in the AV_(3)Sb_(5)family.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1400400)the National Natural Science Foundation of China (Grant Nos.92165205,12074175,and 12374137)。
文摘By utilizing the fluctuation exchange approximation method,we perform a study on the superconducting pairing symmetry in a t_(2g) three-orbital model on the square lattice.Although the tight-binding parameters of the model are based on Sr_(2)RuO_(4),we have systematically studied the evolution of superconducting pairing symmetry with the carrier density and interactions,making our findings relevant to a broader range of material systems.Under a moderate Hund’s coupling,we find that spin fluctuations dominate the superconducting pairing,leading to a prevalent spin-singlet pairing with a d_(x^(2)-y^(2))-wave symmetry for the carrier density within the range of n=1.5-4 per site.By reducing the Hund’s coupling,the charge fluctuations are enhanced and play a crucial role in determining the pairing symmetry,leading to a transition of the pairing symmetry from the spin-singlet d_(x^(2)-y^(2))-wave to the spin-triplet p-wave.Furthermore,we find that the superconducting pairings are orbital dependent.As the carrier density changes from n=4 to n=1.5,the active orbitals for superconducting pairing shift from the quasi-two-dimensional orbital dxy to the quasi-one-dimensional orbitals d_(xz) and d_(yz).
基金Project supported by the National Natural Science Foundation of China (Grant No.12074130)the Natural Science Foundation of Guangdong Province (Grant No.2021A1515012340)。
文摘Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.
文摘We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.
基金Supported by the Project of National Social Science Foundation of China(22CMZ015).
文摘In the new era,there is an urgent need to further promote pairing assistance to Xizang,promote the simultaneous construction of a strong agriculture in Xizang and the China's Mainland,and compose a Chinese-style modernization.Southern Xizang,located in the southeastern part of the Xizang Autonomous Region,includes Shannan City and Nyingchi City,is a region assisted by four provincial partners including Hubei Province.This paper introduces the agricultural environment in southern Xizang,studies its agricultural characteristics,and analyzes the main issues of its pairing assistance.Taking forging the strong consciousness of the Chinese national community as the main line,the paper explores strategies for promoting agricultural high-quality development in southern Xizang through pairing assistance to Xizang from the perspective of agricultural power,and proposes some strategies,such as inheriting agricultural cultural heritage,promoting the upgrading of modern seed industry,enhancing the characteristic advantages of highland barley(naked barley)and animal husbandry industries,and developing edible fungi and cold water fish industries.
基金supported by the National Natural Science Foundation of China(22302019)the Changzhou Sci&Tech Program(CJ20220214).
文摘It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for electrocatalytic HMF oxidative reaction(e-HMFOR)have been facing low Faradaic efficiency(FE)and high water splitting voltage.Herein,we propose a strategy of the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction by constructing a Co-Ni paired site,where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site,thus giving the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction superior electrocata lytic performances for e-HMFOR and water splitting.By optimizing conditions,the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction has high conversion of 99.7%,high selectivity of 99.9%,and high FE of 98.4%at 1.3 V,as well as low cell voltage of 1.31 V at 10 mA cm^(-2)in 1 M KOH+0.1 M HMF.This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H_(2)in an economical manner.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
文摘Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism.
文摘Metamorphic mechanism has the advantages of variable topology and variable degrees of freedom, which can realize the requirements of multi-conditions and multi-tasks, and has a good application prospect. The configuration transformation is prominent feature of the metamorphic mechanism. The number of constraints or properties of the kinematic pairs provided by the metamorphic kinematic pairs will change under certain conditions, its dynamic performance is much more complex than that of traditional kinematic pairs with immutable constraints. However, the clearance model about traditional kinematic pairs with immutable constraints established by long-term research is difficult to be directly applied to the metachromatic kinematic pairs. Referring to the experience of the traditional kinematic pairs with immutable constraints, the continuous contact model of Metamorphic Groove pin pair with clearance is established. According to the traditional continuous contact model of the kinematic pairs with immutable constraints, the forces between the elements of kinematic pair of the mechanism with clearance and the ideal mechanism without clearance are regarded as the same, and the inertia force and inertia moment of the components are also calculated according to the acceleration of the ideal mechanism. The clearance is regarded as a massless virtual bar with length r. For the rotating pair part, the massless virtual bar length r is the difference between the radius of the shaft and the hole, and for the sliding pair part, the massless virtual bar length r is half of the difference between the height of the slider and the guide groove. According to the new mechanism without gap after adding the imaginary bar, kinetic energy and potential energy of the system are calculated for the two configurations of mechanism with metamorphic Groove pin pair with clearance. The kinetic energy and potential energy of the system are calculated according to the new mechanism without clearance after adding the massless virtual bar. The kinetic energy, potential energy and generalized force are substituted into the Lagrangian equation to obtain the motion equation of the metamorphic mechanism, which lays the foundation for the dynamic performance study of the mechanism with metamorphic groove pin pair with clearance.
基金supported by the National Natural Science Foundation of China(Grant No.12225509),the National Natural Science Foundation of China(Grant No.12247101)the Polish National Science Centre(Grant No.2024/53/B/ST2/00975)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2024-jdzx06)the Natural Science Foundation of Gansu Province(Grant No.22JR5RA389)the‘111 Center’under Grant No.B20063。
文摘Decays of charmonium into hyperon and antihyperon pairs provide a pristine laboratory for exploring hyperon properties,such as their polarization and decay parameters,and for conducting tests of fundamental symmetries.This brief review highlights the significant progress made in precise tests of CP symmetry at BESIII using entangled hyperon-antihyperon pairs。
基金the National Natural Science Foundation of China(No.82074341).
文摘Sjögren’s syndrome(SS)is an autoimmune disease characterized primarily by oral and periocular dryness.Astragalus-Salvia(AS)and Ophiopogon-Dendrobium(OD)represent two frequently utilized herb pairs in SS treatment.While the combination of AS-OD herb pairs demonstrates clinical efficacy in alleviating SS symptoms,its underlying mechanism remains unclear.This investigation sought to assess the therapeutic effects and elucidate the potential mechanisms of AS-OD in non-obese diabetic(NOD)/Ltj mice with SS.The study utilized NOD/Ltj mice as SS models,administering AS-OD treatment for 10 weeks at doses of 113.1,226.2,and 339.3 mg·d−1·20 g−1.Results demonstrated that AS-OD improved SS symptoms,evidenced by enhanced salivary flow rate,decreased anti-SSA/Ro and anti-SSB/La antibody levels,increased swimming duration,and reduced lactate(LA)and blood urea nitrogen(BUN)levels in NOD/Ltj mice.AS-OD reduced lymphocyte infiltration,enhanced Aquaporin-5(AQP5)expression in the submandibular gland,decreased inflammatory cytokine levels in the submandibular gland,and reduced the T helper type 17/regulatory T lymphocyte(Th17/Treg)cell ratio in the spleen.Transcriptomic and proteomic analyses indicated AS-OD’s involvement in regulating phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)and Janus kinase 3/signal transducer and activator of transcription 3(JAK1/STAT3)pathways,with inhibitory effects validated in both NOD/Ltj mice submandibular gland and A-253 cells.Furthermore,AS-OD enhanced cell viability and reduced A-253 cell apoptosis through the PI3K/AKT pathway.In A-253 cells,AS-OD reduced inflammatory cytokine levels,CXC chemokine ligand 9/10(CXCL9/10),and T-cell chemotaxis by inhibiting the JAK1/STAT3 pathway.AS-OD mitigates SS by suppressing inflammation and immune responses through the PI3K/AKT and JAK1/STAT3 pathways.
基金supported by National Natural Science Foundation of China(21871204,22371198)Postgraduate Research&Practice Innovation Program of Jiangsu Province。
文摘A series of amine-bridged bis(phenolate)rare-earth(Sc,Y)aryloxides was synthesized and characterized.These complexes were successfully used for the controlled Lewis pair polymerization(LPP)of functional acrylamides in combination with phosphines,affording a new type of polyacrylamides with predictable molecular weight and low molecular weight distribution.The living nature of this LPP was verified by near-quantitative initiation efficiencies,a linear increase of molecular weight vs monomer-to-initiator ratio and monomer conversion,chain extensions,and the synthesis of well-defined block copolymers.The mechanistic studies were performed through the isolation of a zwitterionic intermediate as well as the end-chain analysis of oligomers,showcasing a rare-earth/phosphine cooperation.Furthermore,the resultant polyacrylamides exhibit outstanding thermal stability and great potential for application in photovoltaic devices.
基金supported by the National Natural Science Foundation of China(Grant No.12271488)。
文摘The aim of this paper is to study an extended modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff(mKdV-CBS)equation and present its Lax pair with a spectral parameter.Meanwhile,a Miura transformation is explored,which reveals the relationship between solutions of the extended mKdV-CBS equation and the extended(2+1)-dimensional Korteweg-de Vries(KdV)equation.On the basis of the obtained Lax pair and the existing research results,the Darboux transformation is derived,which plays a crucial role in presenting soliton solutions.In addition,soliton molecules are given by the velocity resonance mechanism.