A novel bifunctional task-specific ionic liquid(TSIL),i.e.[trialkylmethylammonium][sec-nonylphenoxy acetate]([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin,and the prepared solvent impreganated...A novel bifunctional task-specific ionic liquid(TSIL),i.e.[trialkylmethylammonium][sec-nonylphenoxy acetate]([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin,and the prepared solvent impreganated resin(SIR) was studied for rare earth(RE) separation.Adsorption ability of the SIR was indicated to be obviously higher than that prepared by [A336][NO3] because of the functional anion of [A336][CA-100].Adsorption kinetics,adsorption isotherm,separation and desorption of the SIR were also stu...展开更多
A new kind of hydrophobic ionic liquids [1-alkyl-3-(1-carboxylpropyl)im][PF6] has been synthesized, and their extraction.properties for Y(III) in the nitric acid medium was also investigated. The effects of extrac...A new kind of hydrophobic ionic liquids [1-alkyl-3-(1-carboxylpropyl)im][PF6] has been synthesized, and their extraction.properties for Y(III) in the nitric acid medium was also investigated. The effects of extractant concentration, equilibrium pH of aqueous phase, salt concentration, temperature etc. were discussed. The results show that this kind of Task-Specific Ionic Liquid (TSIL) needs to be saponified before being used for the Y(III) extraction, and the extraction is-acid dependent,-and the extraction efficiency increases with the aqueous phase acldity decreasing. Furthermore, the loaded organic phase is easy to be stripped; more than 95% Y(III) could be stripped from the loaded organic phase when the stripping acidity is higher than 0.07 mol-L-1. The slope analysis technique is used to investigate the extraction mechanism, and a possible cation-exchange extraction mechanism is proposed in the oresent extraction system.展开更多
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL...Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.展开更多
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho...Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.展开更多
Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-...Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading.展开更多
We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisti...We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.展开更多
A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic syn...A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results.展开更多
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec...The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.展开更多
The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its green...The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs.展开更多
The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel ap...The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel approach involving the development of iron-based ionic liquids as photocatalysts has been pursued for the first time,with the goal of simultaneously facilitating the LMCT process and addressing the issue of photocatalyst recovery.Remarkably,the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate(C_(4)mim-Fe Cl_(4))demonstrates exceptional recyclability and stability for the photocatalytic hydroacylation of olefins.This study will pave the way for new approaches to photocatalytic organic synthesis using ionic liquids as recyclable photocatalysts.展开更多
Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these...Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these pseudomembranes face challenges such as saliva flushing,dynamic changes,and the presence of abundant microorganisms in the complex oral environment.Herein,we developed an injectable,photoinduction,in situ-enhanceable oral ulcer repair hydrogel(named as GIL2)by incorporating dynamic phenylboronic acid ester bonds and imidazole ions into a methacrylated gelatin matrix.GIL2 exhibited rapid gelation(3 s),low swelling properties(1.07 g/g),robust tensile strength(56.83 kPa)and high adhesive strength(63.38 kPa),allowing it to adhere effectively to the ulcer surface.Moreover,the GIL2 demonstrated intrinsic antibacterial and antioxidant qualities.Within a diabetic rat model for oral ulcers,GIL2 effectively eased oxidative stress and decreased the inflammation present in ulcerated wounds,thereby greatly hastening the healing process of these ulcers.Together,GIL2 hydrogel demonstrates remarkable adaptability within the oral milieu,revitalizing clinical strategy advancements for treating bacterialinfected oral ulcers.展开更多
Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big ...Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big challenge.In this work,a strategy of introducing functionalized molecules with desirable CO_(2)affinity to regulate Ag catalyst for promoting electrochemical reduction of CO_(2)was proposed.Specifically,3-mercapto-1,2,4-triazole was introduced onto the Ag nanoparticle(Ag-m-Triz)for the first time to achieve selectively converting CO_(2)to carbon monoxide(CO).This Ag-m-Triz exhibits excellent performance for CO_(2)reduction with a high CO Faradaic efficiency(FECO)of 99.2%and CO partial current density of 85.0 mA cm^(-2)at-2.3 V vs.Ag/Ag^(+) in H-cell when combined with the ionic liquid-based electrolyte,30 wt%1-butyl-3-methylimidazolium hexafluorophosphate([Bmim][PF6])-65 wt%acetonitrile(AcN)-5 wt%H2O,which is 2.5-fold higher than the current density in Ag-powder under the same condition.Mechanism studies confirm that the significantly improved performance of Ag-m-Triz originates from(i)the stronger adsorption ability of CO_(2)molecule and(ii)the weaker binding energy to form the COOH*intermediate on the surface of Ag-m-Triz compared with the Ag-powder catalyst,which boosts the conversion of CO_(2)to CO.This research provides a facile way to regulate electrocatalysts for efficient CO_(2)reduction by introducing functionalized molecules.展开更多
An ionic liquid assisted hydrogel modified silica was synthesized using a one-pot polymerization and physical coating technique and subsequently applied to mixed-mode liquid chromatography.Analytical techniques,includ...An ionic liquid assisted hydrogel modified silica was synthesized using a one-pot polymerization and physical coating technique and subsequently applied to mixed-mode liquid chromatography.Analytical techniques,including Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and elemental analysis,etc.,confirmed the successful prepared of this innovative stationary phase.The unique combination of amide,long alkyl chain,and imidazole ring in the hydrogel coating enables the stationary phase to function effectively in hydrophilic/reversed-phase/ion exchange liquid chromatography.Notably,the stationary phase exhibited superior separation performance owing to the synergistic effect of the ionic liquid and hydrogel.This was particularly evident when analyzing various analytes such as organic acids,nucleosides/bases,polycyclic aromatic hydrocarbons(PAHs)and anions.Furthermore,under our operating conditions,an excellent column efficiency of 53,642.9 plates/m was achieved for theobromine.In summary,we have proposed a straightforward strategy to enhance the separation performance of hydrogel coatings in liquid chromatography,thereby broadening the potential applications of hydrogels in the field of separation.展开更多
The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen a...The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen and nitrogen led to a decrease in the catalytic performance of chloroaluminate IL.As the water concentration increased to 65 mg·g^(-1),the total selectivity of multi-octylnaphthalene gradually decreased to 42.33%,and the average friction coefficient of the multi-octylnaphthalene base oil gradually increased to 0.201.When the concentration of impurities increased to a critical value,the chloroaluminate IL began to deactivate,leading to a decrease in naphthalene conversion.The critical concentrations for ethanolamine,water,methanol,ether,and diisopentyl sulfide were 33 mg·g^(-1),65 mg·g^(-1),67mg·g^(-1),87 mg·g^(-1),and 123 mg·g^(-1),respectively.Impurities with higher basicity resulted in an earlier onset of chloroaluminate IL deactivation.The changes of Lewis and Brønsted acids in chloroaluminate IL under the influence of impurities were investigated using in situ IR and 27Al NMR spectroscopy.2,6-dimethylpyridine as an indicator could detect the changes of Brønsted acid in chloroaluminate IL better,but the changes of Lewis acid were not obvious because of the overlap between the characteristic peaks.2,6-dichloropyridine as an indicator could exclusively detect the changes of Lewis acid in chloroaluminate IL.With the increase inwater concentration,the Lewis acid in chloroaluminate IL was continuously consumed and converted into Brønsted acid,and the Lewis acid gradually decreased,while the Brønsted acid showed a change of increasing first and then decreasing.展开更多
Due to insufficient energy density,supercapacitors(SCs)with preeminent-power and long cycle stability cannot be implemented in some practical applications.Exploring hybrid materials with redox activity to emerge high ...Due to insufficient energy density,supercapacitors(SCs)with preeminent-power and long cycle stability cannot be implemented in some practical applications.Exploring hybrid materials with redox activity to emerge high specific capacitance in ionic liquid(IL)electrolytes can solve this problem.Herein,we report a redox-organic molecule 2,6-diaminoanthraquinone(DAAQ)modified MXene(Ti3C2Tx)/Graphene(DAAQ-M/G)composite material.With the assist of graphene oxide(GO),MXene and graphene fabricate a three-dimensional(3D)interconnected structure as a conductive framework,which inhibits self-stacking of MXene monolayers and ensures high electronic conductivity.Meanwhile,DAAQ is loaded onto the M/G framework through covalent/non-covalent functionalization.The DAAQ as a spacer effectively enlarges the interlayer spacing of MXene nanosheets,and meanwhile produces reversible redox reactions during charge/discharge processes to provide additional Faradaic contribution to capacity.Therefore,the specific capacitance(capacity)of the DAAQ-M/G as the negative electrode material reaches to 226 F g^(-1)(306 C g^(-1))at 1 A g^(-1)in 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4)electrolyte.Furthermore,an asymmetric supercapacitor(ASC)is assembled using DAAQ-M/G as the negative electrode and self-prepared organic molecule hydroquinone modified reduced graphene oxide(HQ-RGO)material as the positive electrode,with a high energy density of 43 Wh kg^(-1)at high power density of 1669 Wkg^(-1).The ASC can maintain 80%of initial specific capacitance after 9000 cycles.This research can provide better support to develop advanced organic molecules-modified MXene composite materials for ionic liquid-based SCs.展开更多
The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to furthe...The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to further investigate the effect of ion solvation energy on the evaporation of cations and anions from ionic liquid under the action of a uniform electric field, this paper establishes a transient Electrohydrodynamic (EHD) model for free ionic liquid droplets undergoing ion evaporation. The dynamic processes of droplet deformation and ion evaporation are simulated. And the study further focuses on the influence of different ion solvation energies for cations on the droplet morphology and the ion evaporation characteristics at the positively charged end and negatively charged end of the droplet. The results indicate that, when the ion solvation energy for cations is higher than that of anions, it will cause the ion evaporation at the positively charged end of the droplet to lag behind the ion evaporation at the negatively charged end. And the higher the ion solvation energy for the cations, the longer the evaporation lag time at the positively charged end of the droplet, which will lead to a higher peak of surface charge density that can be reached, resulting in a larger evaporation current and sharper droplet stretching deformation. Additionally, the peak surface charge density of the positively charged end of the droplet is linearly related to the ion solvation energy for cations, while the peak surface charge density of the negatively charged end remains almost unchanged and is not significantly affected by the ion solvation energy for cations.展开更多
The composite membrane of microcrystalline cellulose(MCC)with polyvinyl alcohol(PVA)was effectively synthesized using ionic liquids(ILs)as the solvent and dimethyl sulfone(DMSO)as the co-solvent through the phase conv...The composite membrane of microcrystalline cellulose(MCC)with polyvinyl alcohol(PVA)was effectively synthesized using ionic liquids(ILs)as the solvent and dimethyl sulfone(DMSO)as the co-solvent through the phase conversion method.The effects of IL structure and the IL/DMSO mass ratio on the solubility of MCC were investigated.The findings indicated that the composite solvent functioned as a non-derivative solvent for MCC dissolution.The inclusion of DMSO decreased the viscosity of ILs and enhanced the rate of MCC dissolution.The solubility of MCC reached 14.5%(mass)when the mass ratio of[Bmim]Cl to DMSO was 1:1.The fabricated MCC membrane exhibited a smooth surface and a dense structure.PVA@MCC demonstrated exceptional mechanical properties and a uniform structure at a mass ratio of 2:1,with an elongation at break of 76%and a tensile strength of 14.6 MPa.The effects of antibacterial agents on the morphology,transmittance,mechanical properties,and antibacterial efficiency of PVA@MCC were investigated.The findings revealed that PVA@MCC fortified with clove oil showcased a flat and smooth surface,devoid of stratification or aggregation,and demonstrated superior mechanical properties compared to its counterparts with chitosan and ZnO additions.The elongation at break of PVA@MCC with clove oil increased to 137.6%,while its tensile strength decreased to 10.4 MPa.PVA@MCC with clove oil exhibited an antibacterial efficiency exceeding 68%against Escherichia coli,Staphylococcus aureus,and Pseudomonas aeruginosa,thereby extending the shelf life of cherry tomatoes by an additional four days at ambient temperature.展开更多
Lead-free vacancy-ordered double perovskites have emerged as promising materials for optoelectronic applications due to their environmentally friendly characteristics and exceptional properties.However,conventional sy...Lead-free vacancy-ordered double perovskites have emerged as promising materials for optoelectronic applications due to their environmentally friendly characteristics and exceptional properties.However,conventional synthesis methods often depend on toxic reagents and stringent conditions,limiting their large-scale synthesis and practical application.In this work,an environmentally friendly synthesis route was proposed for preparing vacancy-ordered double perovskites Cs_(2)SnX_(6)(X=Cl,Br,and I)with high crystallinity under low-temperature and ambient-pressure conditions.This method utilizes ion liquid(i.e.,1-butyl-3-methylimidazolium chloride([Bmim]Cl),1-butyl-3-methylimidazolium bromide([Bmim]Br)and 1-butyl-3-methylimidazolium iodide([Bmim]I))in combination with saturated aqueous solutions of ammonium halides as solvents,replacing traditional hydrogen halide acid or polar organic solvents.Experimental and characterization results demonstrate that the Cs_(2)SnX_(6)(X=Cl,Br,and I)possess high crystallinity,well-defined morphology,and improved thermal stability.These improvements are attributed to the hydrogen bonding interactions between ionic liquids and the perovskite precursors.Additionally,the halogen-rich environment provided by ionic liquids and ammonium halide salts facilitates defect passivation.Furthermore,this method is applicable to the synthesis of doped perovskite crystals,demonstrated by the successful synthesis of Bi-doped Cs_(2)SnCl_(6) crystals with a photoluminescence quantum efficiency of 12.73%.This study presents a novel strategy for synthesizing high-quality vacancy-ordered double perovskites and their doping or alloyed compounds.展开更多
The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative des...The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative desulfurization system was constructed,composed of dual-acidic ionic liquids(DILs)and H_(2)O_(2)-AcOH.The investigation results of four DILs prepared from different metal chlorides([HSO_(3)C_(3)NEt_(3)]Cl-MnCl_(n),MnCl_(n)=AlCl_(3),ZnCl_(2),CuCl_(2),FeCl_(3))in oxidative desulfurization showed that[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)had an outstanding catalytic effect and significantly promoted the oxidation of sulfides.With a 0.2 g[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3),the removal rate of dibenzothiophene(DBT)reached 100%in 10 mL model oil under mild conditions at 55℃for 20 min.The key is its ability to induce the dismutation of su-peroxide anions(·O_(2)^(-)),which facilitates the generation of singlet oxygen(1 O_(2)).The efficient oxidation of DBT is accomplished through a predominantly^(1)O_(2)-mediated_(n)on-radical mechanism.[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)serves as a favorable medium for contact to be made between^(1)O_(2)and sulfides,which indicates an efficient catalytic-adsorption synergy.展开更多
基金supported by ‘Hundreds Talents Program’from Chinese Academy of Sciences, National Natural Science Foundation of China (50574080, 20901073)National Key Technology R&D Program of China (2006BAC02A10)Distinguished Young Scholar Foundation of Jilin Province (20060114)
文摘A novel bifunctional task-specific ionic liquid(TSIL),i.e.[trialkylmethylammonium][sec-nonylphenoxy acetate]([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin,and the prepared solvent impreganated resin(SIR) was studied for rare earth(RE) separation.Adsorption ability of the SIR was indicated to be obviously higher than that prepared by [A336][NO3] because of the functional anion of [A336][CA-100].Adsorption kinetics,adsorption isotherm,separation and desorption of the SIR were also stu...
基金Supported by the National Basic Research Program of China (2012CBA01202)the National Natural Science Foundation of China (51174184)
文摘A new kind of hydrophobic ionic liquids [1-alkyl-3-(1-carboxylpropyl)im][PF6] has been synthesized, and their extraction.properties for Y(III) in the nitric acid medium was also investigated. The effects of extractant concentration, equilibrium pH of aqueous phase, salt concentration, temperature etc. were discussed. The results show that this kind of Task-Specific Ionic Liquid (TSIL) needs to be saponified before being used for the Y(III) extraction, and the extraction is-acid dependent,-and the extraction efficiency increases with the aqueous phase acldity decreasing. Furthermore, the loaded organic phase is easy to be stripped; more than 95% Y(III) could be stripped from the loaded organic phase when the stripping acidity is higher than 0.07 mol-L-1. The slope analysis technique is used to investigate the extraction mechanism, and a possible cation-exchange extraction mechanism is proposed in the oresent extraction system.
基金co-supported by the National Key R&D Program of China(No.2020YFC2201001)the Shenzhen Science and Technology Program,China(No.20210623091808026)。
文摘Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.
基金financial supports pro-vided by the National Natural Science Foundation of China(No.21905279)the Natural Science Foundation of Fujian Province(No.2020J05086).
文摘Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.
基金sponsored by the National Natural Science Foundation of China (Nos. 22308145, 22208140, 22178159, 22078145)Natural Science Foundation of Jiangsu Province (BK20230791)Postgraduate Research Innovation Program of Jiangsu Province (KYCX24_0165)。
文摘Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading.
文摘We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.
文摘A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results.
基金supported by the National Natural Science Foundation of China(22209040,22202063).
文摘The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.
基金funded by Research Platforms and Projects for Higher Education Institutions of Department of Education of Guangdong Province in 2024(2024KTSCX256)2023 Guangdong Province Higher Vocational Education Teaching Quality and Teaching Reform Project(2023JG080).
文摘The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs.
基金financial support from the National Natural Science Foundation of China(Nos.22071222,22171249)the Natural Science Foundation of Henan Province(Nos.232300421363,242300420526)+2 种基金Key Research Projects of Universities in Henan Province(No.23A180010)Science&Technology Innovation Talents in Universities of Henan Province(No.23HASTIT003)Science and Technology Research and Development Plan Joint Fund of Henan Province(No.242301420006)。
文摘The photoinduced ligand-to-metal charge transfer(LMCT)process has been extensively investigated,however,the recovery of photocatalysts has remained a persistent challenge in the field.In light of this issue,a novel approach involving the development of iron-based ionic liquids as photocatalysts has been pursued for the first time,with the goal of simultaneously facilitating the LMCT process and addressing the issue of photocatalyst recovery.Remarkably,the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate(C_(4)mim-Fe Cl_(4))demonstrates exceptional recyclability and stability for the photocatalytic hydroacylation of olefins.This study will pave the way for new approaches to photocatalytic organic synthesis using ionic liquids as recyclable photocatalysts.
基金funding from the National Natural Science Foundation of China(Nos.82071170 and 82371016)the Zhejiang Provincial Science and Technology Project for Public Welfare(No.LGF21H140004).
文摘Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these pseudomembranes face challenges such as saliva flushing,dynamic changes,and the presence of abundant microorganisms in the complex oral environment.Herein,we developed an injectable,photoinduction,in situ-enhanceable oral ulcer repair hydrogel(named as GIL2)by incorporating dynamic phenylboronic acid ester bonds and imidazole ions into a methacrylated gelatin matrix.GIL2 exhibited rapid gelation(3 s),low swelling properties(1.07 g/g),robust tensile strength(56.83 kPa)and high adhesive strength(63.38 kPa),allowing it to adhere effectively to the ulcer surface.Moreover,the GIL2 demonstrated intrinsic antibacterial and antioxidant qualities.Within a diabetic rat model for oral ulcers,GIL2 effectively eased oxidative stress and decreased the inflammation present in ulcerated wounds,thereby greatly hastening the healing process of these ulcers.Together,GIL2 hydrogel demonstrates remarkable adaptability within the oral milieu,revitalizing clinical strategy advancements for treating bacterialinfected oral ulcers.
基金supported by the Swedish Energy Agency(P47500-1)the National Key R&D Program of China(2020YFA0710200)+2 种基金the National Natural Science Foundation of China(22378401 and U22A20416)the financial support from STINT(CH2019-8287)support from the European Union and Swedish Energy Agency(P2020-90066).
文摘Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big challenge.In this work,a strategy of introducing functionalized molecules with desirable CO_(2)affinity to regulate Ag catalyst for promoting electrochemical reduction of CO_(2)was proposed.Specifically,3-mercapto-1,2,4-triazole was introduced onto the Ag nanoparticle(Ag-m-Triz)for the first time to achieve selectively converting CO_(2)to carbon monoxide(CO).This Ag-m-Triz exhibits excellent performance for CO_(2)reduction with a high CO Faradaic efficiency(FECO)of 99.2%and CO partial current density of 85.0 mA cm^(-2)at-2.3 V vs.Ag/Ag^(+) in H-cell when combined with the ionic liquid-based electrolyte,30 wt%1-butyl-3-methylimidazolium hexafluorophosphate([Bmim][PF6])-65 wt%acetonitrile(AcN)-5 wt%H2O,which is 2.5-fold higher than the current density in Ag-powder under the same condition.Mechanism studies confirm that the significantly improved performance of Ag-m-Triz originates from(i)the stronger adsorption ability of CO_(2)molecule and(ii)the weaker binding energy to form the COOH*intermediate on the surface of Ag-m-Triz compared with the Ag-powder catalyst,which boosts the conversion of CO_(2)to CO.This research provides a facile way to regulate electrocatalysts for efficient CO_(2)reduction by introducing functionalized molecules.
基金Innovation Groups of Basic Research in Gansu Province(No.23JRRA570)。
文摘An ionic liquid assisted hydrogel modified silica was synthesized using a one-pot polymerization and physical coating technique and subsequently applied to mixed-mode liquid chromatography.Analytical techniques,including Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and elemental analysis,etc.,confirmed the successful prepared of this innovative stationary phase.The unique combination of amide,long alkyl chain,and imidazole ring in the hydrogel coating enables the stationary phase to function effectively in hydrophilic/reversed-phase/ion exchange liquid chromatography.Notably,the stationary phase exhibited superior separation performance owing to the synergistic effect of the ionic liquid and hydrogel.This was particularly evident when analyzing various analytes such as organic acids,nucleosides/bases,polycyclic aromatic hydrocarbons(PAHs)and anions.Furthermore,under our operating conditions,an excellent column efficiency of 53,642.9 plates/m was achieved for theobromine.In summary,we have proposed a straightforward strategy to enhance the separation performance of hydrogel coatings in liquid chromatography,thereby broadening the potential applications of hydrogels in the field of separation.
基金financial support of the Scientific Research Funds of Huaqiao University (605-50Y17073)
文摘The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen and nitrogen led to a decrease in the catalytic performance of chloroaluminate IL.As the water concentration increased to 65 mg·g^(-1),the total selectivity of multi-octylnaphthalene gradually decreased to 42.33%,and the average friction coefficient of the multi-octylnaphthalene base oil gradually increased to 0.201.When the concentration of impurities increased to a critical value,the chloroaluminate IL began to deactivate,leading to a decrease in naphthalene conversion.The critical concentrations for ethanolamine,water,methanol,ether,and diisopentyl sulfide were 33 mg·g^(-1),65 mg·g^(-1),67mg·g^(-1),87 mg·g^(-1),and 123 mg·g^(-1),respectively.Impurities with higher basicity resulted in an earlier onset of chloroaluminate IL deactivation.The changes of Lewis and Brønsted acids in chloroaluminate IL under the influence of impurities were investigated using in situ IR and 27Al NMR spectroscopy.2,6-dimethylpyridine as an indicator could detect the changes of Brønsted acid in chloroaluminate IL better,but the changes of Lewis acid were not obvious because of the overlap between the characteristic peaks.2,6-dichloropyridine as an indicator could exclusively detect the changes of Lewis acid in chloroaluminate IL.With the increase inwater concentration,the Lewis acid in chloroaluminate IL was continuously consumed and converted into Brønsted acid,and the Lewis acid gradually decreased,while the Brønsted acid showed a change of increasing first and then decreasing.
基金supported by the National Natural Science Foundation of China(Nos.22173028,21873026).
文摘Due to insufficient energy density,supercapacitors(SCs)with preeminent-power and long cycle stability cannot be implemented in some practical applications.Exploring hybrid materials with redox activity to emerge high specific capacitance in ionic liquid(IL)electrolytes can solve this problem.Herein,we report a redox-organic molecule 2,6-diaminoanthraquinone(DAAQ)modified MXene(Ti3C2Tx)/Graphene(DAAQ-M/G)composite material.With the assist of graphene oxide(GO),MXene and graphene fabricate a three-dimensional(3D)interconnected structure as a conductive framework,which inhibits self-stacking of MXene monolayers and ensures high electronic conductivity.Meanwhile,DAAQ is loaded onto the M/G framework through covalent/non-covalent functionalization.The DAAQ as a spacer effectively enlarges the interlayer spacing of MXene nanosheets,and meanwhile produces reversible redox reactions during charge/discharge processes to provide additional Faradaic contribution to capacity.Therefore,the specific capacitance(capacity)of the DAAQ-M/G as the negative electrode material reaches to 226 F g^(-1)(306 C g^(-1))at 1 A g^(-1)in 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4)electrolyte.Furthermore,an asymmetric supercapacitor(ASC)is assembled using DAAQ-M/G as the negative electrode and self-prepared organic molecule hydroquinone modified reduced graphene oxide(HQ-RGO)material as the positive electrode,with a high energy density of 43 Wh kg^(-1)at high power density of 1669 Wkg^(-1).The ASC can maintain 80%of initial specific capacitance after 9000 cycles.This research can provide better support to develop advanced organic molecules-modified MXene composite materials for ionic liquid-based SCs.
基金supported by the National Key R&D Program of China(No.2020YFC2201100)the National Natural Science Foundation of China(Nos.12175032,12102082,12275044,12402327,12405290 and 12211530449)+4 种基金the Joint Program of the Science and Technology Program of Liaoning,China(No.2023JH2/101700285)the Fundamental Research Funds for the Central Universities of China(Nos.DUT22RC(3)078,DUT23RC(3)040 and DUT24ZD106)the S&T Program of Hebei,China(No.246Z2301G)the S&T Innovation Program of Hebei,China(Nos.SJMYF2022X18 and SJMYF2022X06)the Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology and Advanced Space Propulsion Laboratory of BICE,China(No.LabASP-2023-07).
文摘The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to further investigate the effect of ion solvation energy on the evaporation of cations and anions from ionic liquid under the action of a uniform electric field, this paper establishes a transient Electrohydrodynamic (EHD) model for free ionic liquid droplets undergoing ion evaporation. The dynamic processes of droplet deformation and ion evaporation are simulated. And the study further focuses on the influence of different ion solvation energies for cations on the droplet morphology and the ion evaporation characteristics at the positively charged end and negatively charged end of the droplet. The results indicate that, when the ion solvation energy for cations is higher than that of anions, it will cause the ion evaporation at the positively charged end of the droplet to lag behind the ion evaporation at the negatively charged end. And the higher the ion solvation energy for the cations, the longer the evaporation lag time at the positively charged end of the droplet, which will lead to a higher peak of surface charge density that can be reached, resulting in a larger evaporation current and sharper droplet stretching deformation. Additionally, the peak surface charge density of the positively charged end of the droplet is linearly related to the ion solvation energy for cations, while the peak surface charge density of the negatively charged end remains almost unchanged and is not significantly affected by the ion solvation energy for cations.
基金financial support of the Scientific Research Funds of Huaqiao University(605-50Y17073),Xiamen,China.
文摘The composite membrane of microcrystalline cellulose(MCC)with polyvinyl alcohol(PVA)was effectively synthesized using ionic liquids(ILs)as the solvent and dimethyl sulfone(DMSO)as the co-solvent through the phase conversion method.The effects of IL structure and the IL/DMSO mass ratio on the solubility of MCC were investigated.The findings indicated that the composite solvent functioned as a non-derivative solvent for MCC dissolution.The inclusion of DMSO decreased the viscosity of ILs and enhanced the rate of MCC dissolution.The solubility of MCC reached 14.5%(mass)when the mass ratio of[Bmim]Cl to DMSO was 1:1.The fabricated MCC membrane exhibited a smooth surface and a dense structure.PVA@MCC demonstrated exceptional mechanical properties and a uniform structure at a mass ratio of 2:1,with an elongation at break of 76%and a tensile strength of 14.6 MPa.The effects of antibacterial agents on the morphology,transmittance,mechanical properties,and antibacterial efficiency of PVA@MCC were investigated.The findings revealed that PVA@MCC fortified with clove oil showcased a flat and smooth surface,devoid of stratification or aggregation,and demonstrated superior mechanical properties compared to its counterparts with chitosan and ZnO additions.The elongation at break of PVA@MCC with clove oil increased to 137.6%,while its tensile strength decreased to 10.4 MPa.PVA@MCC with clove oil exhibited an antibacterial efficiency exceeding 68%against Escherichia coli,Staphylococcus aureus,and Pseudomonas aeruginosa,thereby extending the shelf life of cherry tomatoes by an additional four days at ambient temperature.
基金financially supported by the Beijing Natural Science Foundation,China(Nos.2254087 and 2242008)the Beijing Information Science and Technology University Foundation,China(No.1925008)Beijing Information Science and Technology University Young Faculty Support Program,China(No.YBT202411).
文摘Lead-free vacancy-ordered double perovskites have emerged as promising materials for optoelectronic applications due to their environmentally friendly characteristics and exceptional properties.However,conventional synthesis methods often depend on toxic reagents and stringent conditions,limiting their large-scale synthesis and practical application.In this work,an environmentally friendly synthesis route was proposed for preparing vacancy-ordered double perovskites Cs_(2)SnX_(6)(X=Cl,Br,and I)with high crystallinity under low-temperature and ambient-pressure conditions.This method utilizes ion liquid(i.e.,1-butyl-3-methylimidazolium chloride([Bmim]Cl),1-butyl-3-methylimidazolium bromide([Bmim]Br)and 1-butyl-3-methylimidazolium iodide([Bmim]I))in combination with saturated aqueous solutions of ammonium halides as solvents,replacing traditional hydrogen halide acid or polar organic solvents.Experimental and characterization results demonstrate that the Cs_(2)SnX_(6)(X=Cl,Br,and I)possess high crystallinity,well-defined morphology,and improved thermal stability.These improvements are attributed to the hydrogen bonding interactions between ionic liquids and the perovskite precursors.Additionally,the halogen-rich environment provided by ionic liquids and ammonium halide salts facilitates defect passivation.Furthermore,this method is applicable to the synthesis of doped perovskite crystals,demonstrated by the successful synthesis of Bi-doped Cs_(2)SnCl_(6) crystals with a photoluminescence quantum efficiency of 12.73%.This study presents a novel strategy for synthesizing high-quality vacancy-ordered double perovskites and their doping or alloyed compounds.
基金support provided by South Africa National Research Foundation(UID 95983,113648,137947)Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province(no.B2021208005).
文摘The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative desulfurization system was constructed,composed of dual-acidic ionic liquids(DILs)and H_(2)O_(2)-AcOH.The investigation results of four DILs prepared from different metal chlorides([HSO_(3)C_(3)NEt_(3)]Cl-MnCl_(n),MnCl_(n)=AlCl_(3),ZnCl_(2),CuCl_(2),FeCl_(3))in oxidative desulfurization showed that[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)had an outstanding catalytic effect and significantly promoted the oxidation of sulfides.With a 0.2 g[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3),the removal rate of dibenzothiophene(DBT)reached 100%in 10 mL model oil under mild conditions at 55℃for 20 min.The key is its ability to induce the dismutation of su-peroxide anions(·O_(2)^(-)),which facilitates the generation of singlet oxygen(1 O_(2)).The efficient oxidation of DBT is accomplished through a predominantly^(1)O_(2)-mediated_(n)on-radical mechanism.[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)serves as a favorable medium for contact to be made between^(1)O_(2)and sulfides,which indicates an efficient catalytic-adsorption synergy.