期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Design and implementation of scenic-spot introduction-task-oriented3D virtual human spoken dialogue system
1
作者 吴王惠 谢湘 +2 位作者 焦祎姗 张征 高高 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期395-400,共6页
A scenic-spot introduction-task-oriented 3D virtual human spoken dialogue system-- EasyGuide is introduced. The system includes five modules: natural language processing, task do- main knowledge database, dialogue ma... A scenic-spot introduction-task-oriented 3D virtual human spoken dialogue system-- EasyGuide is introduced. The system includes five modules: natural language processing, task do- main knowledge database, dialogue management, voice processing and 3D virtual human text-to-vis- ual speech synthesis. In the first module, dictionary construction along with sentence analysis and semantic representation axe illustrated specifically. A tree-structured knowledge database is designed for the task domain. A novel framework based on the keyword analysis and context constraints is proposed as the dialogue management. As for voice processing module, a software development kit which performs speech recognition and synthesis is introduced briefly. In the last module, 3D viseme synthesis is explained with examples and a text-driven facial animation system is presented. Evalua- tion results show that the system can achieve satisfactory performance. 展开更多
关键词 spoken dialogue system speech recognition dialogue management.
在线阅读 下载PDF
Number Entities Recognition in Multiple Rounds of Dialogue Systems 被引量:1
2
作者 Shan Zhang Bin Cao +1 位作者 Yueshen Xu Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期309-323,共15页
As a representative technique in natural language processing(NLP),named entity recognition is used in many tasks,such as dialogue systems,machine translation and information extraction.In dialogue systems,there is a c... As a representative technique in natural language processing(NLP),named entity recognition is used in many tasks,such as dialogue systems,machine translation and information extraction.In dialogue systems,there is a common case for named entity recognition,where a lot of entities are composed of numbers,and are segmented to be located in different places.For example,in multiple rounds of dialogue systems,a phone number is likely to be divided into several parts,because the phone number is usually long and is emphasized.In this paper,the entity consisting of numbers is named as number entity.The discontinuous positions of number entities result from many reasons.We find two reasons from real-world dialogue systems.The first reason is the repetitive confirmation of different components of a number entity,and the second reason is the interception of mood words.The extraction of number entities is quite useful in many tasks,such as user information completion and service requests correction.However,the existing entity extraction methods cannot extract entities consisting of discontinuous entity blocks.To address these problems,in this paper,we propose a comprehensive method for number entity recognition,which is capable of extracting number entities in multiple rounds of dialogues systems.We conduct extensive experiments on a real-world dataset,and the experimental results demonstrate the high performance of our method. 展开更多
关键词 Natural language processing dialogue systems named entity recognition number entity discontinuous entity blocks
在线阅读 下载PDF
Evaluating Neural Dialogue Systems Using Deep Learning and Conversation History
3
作者 Inshirah Ali AlMutairi Ali Mustafa Qamar 《Journal on Artificial Intelligence》 2022年第3期155-165,共11页
Neural talk models play a leading role in the growing popular building of conversational managers.A commonplace criticism of those systems is that they seldom understand or use the conversation data efficiently.The d... Neural talk models play a leading role in the growing popular building of conversational managers.A commonplace criticism of those systems is that they seldom understand or use the conversation data efficiently.The development of profound concentration on innovations has increased the use of neural models for a discussion display.In recent years,deep learning(DL)models have achieved significant success in various tasks,and many dialogue systems are also employing DL techniques.The primary issues involved in the generation of the dialogue system are acquiring perspectives into instinctual linguistics,comprehension provision,and conversation assessment.In this paper,we mainly focus on DL-based dialogue systems.The issue to be overcome under this publication would be dialogue supervision,which will determine how the framework responds to recognizing the needs of the user.The dataset utilized in this research is extracted from movies.The models implemented in this research are the seq2seq model,transformers,and GPT while using word embedding and NLP.The results obtained after implementation depicted that all three models produced accurate results.In the modern revolutionized world,the demand for a dialogue system is more than ever.Therefore,it is essential to take the necessary steps to build effective dialogue systems. 展开更多
关键词 Seq2Seq CNN dialogue systems NLP RNN transformer GPT
在线阅读 下载PDF
Multi-Head Encoder Shared Model Integrating Intent and Emotion for Dialogue Summarization
4
作者 Xinlai Xing Junliang Chen +2 位作者 Xiaochuan Zhang Shuran Zhou Runqing Zhang 《Computers, Materials & Continua》 2025年第2期2275-2292,共18页
In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challen... In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challenging task. However, previous work has primarily focused on the independent recognition of user intent and emotion, making it difficult to simultaneously track both aspects in the dialogue tracking module and to effectively utilize user emotions in subsequent dialogue strategies. We propose a Multi-Head Encoder Shared Model (MESM) that dynamically integrates features from emotion and intent encoders through a feature fusioner. Addressing the scarcity of datasets containing both emotion and intent labels, we designed a multi-dataset learning approach enabling the model to generate dialogue summaries encompassing both user intent and emotion. Experiments conducted on the MultiWoZ and MELD datasets demonstrate that our model effectively captures user intent and emotion, achieving extremely competitive results in dialogue state tracking tasks. 展开更多
关键词 dialogue summaries dialogue state tracking emotion recognition task-oriented dialogue system pre-trained language model
在线阅读 下载PDF
Prompt-Guided Dialogue State Tracking with GPT-2 and Graph Attention
5
作者 Muhammad Asif Khan Dildar Hussain +5 位作者 Bhuyan Kaibalya Prasad Irfan Ullah Inayat Khan Jawad Khan Yeong Hyeon Gu Pavlos Kefalas 《Computers, Materials & Continua》 2025年第12期5451-5468,共18页
Dialogue State Tracking(DST)is a critical component of task-oriented spoken dialogue systems(SDS),tasked with maintaining an accurate representation of the conversational state by predicting slots and their correspond... Dialogue State Tracking(DST)is a critical component of task-oriented spoken dialogue systems(SDS),tasked with maintaining an accurate representation of the conversational state by predicting slots and their corresponding values.Recent advances leverage Large Language Models(LLMs)with prompt-based tuning to improve tracking accuracy and efficiency.However,these approaches often incur substantial computational and memory overheads and typically address slot extraction implicitly within prompts,without explicitly modeling the complex dependencies between slots and values.In this work,we propose PUGG,a novel DST framework that constructs schema-driven prompts to fine-tune GPT-2 and utilizes its tokenizer to implement a memory encoder.PUGG explicitly extracts slot values via GPT-2 and employs Graph Attention Networks(GATs)to model and reason over the intricate relationships between slots and their associated values.We evaluate PUGG on four publicly available datasets,where it achieves stateof-the-art performance across multiple evaluation metrics,highlighting its robustness and generalizability in diverse conversational scenarios.Our results indicate that the integration of GPT-2 substantially reduces model complexity and memory consumption by streamlining key processes.Moreover,prompt tuning enhances the model’s flexibility and precision in extracting relevant slot-value pairs,while the incorporation of GATs facilitates effective relational reasoning,leading to improved dialogue state representations. 展开更多
关键词 Spoken dialogue systems dialogue state tracking prompt tuning GPT-2 graph attention networks
在线阅读 下载PDF
Analysis of Deviations in an Agent and Ontology-Based Dialogue Management System
6
作者 胡思康 曹元大 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期53-56,共4页
Algorithms of detecting dialogue deviations from a dialogue topic in an agent and ontology-based dialogue management system(AODMS) are proposed. In AODMS, agents and ontologies are introduced to represent domain kno... Algorithms of detecting dialogue deviations from a dialogue topic in an agent and ontology-based dialogue management system(AODMS) are proposed. In AODMS, agents and ontologies are introduced to represent domain knowledge. And general algorithms that model dialogue phenomena in different domains can be realized in that complex relationships between knowledge in different domains can be described by ontologies. An evaluation of the dialogue management system with deviation-judging algorithms on 736 utterances shows that the AODMS is able to talk about the given topic consistently and answer 86.6 % of the utterances, while only 72.1% of the utterances can be responded correctly without deviation-judging module. 展开更多
关键词 AGENT ONTOLOGY dialogue management system DEVIATIONS
在线阅读 下载PDF
SHTQS: a telephonebased Chinese spoken dialogue system
7
作者 Mao Jiaju Chen Qiulin Gao Feng Guo Rong Lu Ruzhan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期881-885,共5页
SHTQS is an intelligent telephone-besed spoken dialyze system providing the infomation about the best route between two sites in Shanghai. Instead of separated parts of speech decoding and language parsing, a close co... SHTQS is an intelligent telephone-besed spoken dialyze system providing the infomation about the best route between two sites in Shanghai. Instead of separated parts of speech decoding and language parsing, a close cool,ration is carded out in SHTQS by integrating automatic speech recognizer (AS,R), language understanding, dialogue management and speech generatot. In such a way, the erroneous analysis and uncertainty happening in the preceding stages would be recovered and determined acourately with high-level knowledge, Moreover, instead of shallow word-level analysis or simply keyword or key phrase matching, a deeper analysis is performed in our system by integrating a robust parser and a semantic interpreter. The robust parser is particularly important for spontanecos speech inputs because most of the inquiry sentences/phrases are ill-formed. In addition, in designinga mixed-initiative dialogue system, understanding users' inquiries is essential; however, simply matching keywords and/or key phrases can hardly achieve this. Therefore, a semantic interpreter is incorporated in oar system. The performnce of is also evaluated. The dialogue efficiency is 4.4 sentences per query on an average and the case precision rate of language understanding module is up to 81%. The results are satisfactory. 展开更多
关键词 spoken dialogue system ASR natural language understanding NLG TTS.
在线阅读 下载PDF
A Dialogue System for Coherent Reasoning with Inconsistent Knowledge Bases
8
作者 Silvio do Lago Pereira Luiz Felipe Zarco dos Santos Lucio Nunes de Lira 《Journal of Computer and Communications》 2015年第8期11-19,共9页
Traditionally, the AI community assumes that a knowledge base must be consistent. Despite that, there are many applications where, due to the existence of rules with exceptions, inconsistent knowledge must be consider... Traditionally, the AI community assumes that a knowledge base must be consistent. Despite that, there are many applications where, due to the existence of rules with exceptions, inconsistent knowledge must be considered. One way of restoring consistency is to withdraw conflicting rules;however, this will destroy part of the knowledge. Indeed, a better alternative would be to give precedence to exceptions. This paper proposes a dialogue system for coherent reasoning with inconsistent knowledge, which resolves conflicts by using precedence relations of three kinds: explicit precedence relation, which is synthesized from precedence rules;implicit precedence relation, which is synthesized from defeasible rules;mixed precedence relation, which is synthesized by combining explicit and implicit precedence relations. 展开更多
关键词 Defeasible REASONING Inconsistent KNOWLEDGE Precedence RELATION dialogue system
暂未订购
Dialogue speech in linguo-didactic interpretation
9
作者 Ashur Yahshiyev 《魅力中国》 2011年第9期189-190,188,共3页
关键词 经济建设 经济发展 市场 中国
在线阅读 下载PDF
MPFToD:a modularized pre-training framework for consistency identification in task-oriented dialogue
10
作者 Libo QIN Shijue HUANG +3 位作者 Qiguang CHEN Qian LIU Wanxiang CHE Ruifeng XU 《Frontiers of Computer Science》 2025年第10期1-11,共11页
Consistency identification in task-oriented dialogue(CI-ToD)can prevent inconsistent dialogue response generation,which has recently emerged as an important and growing research area.This paper takes the first step to... Consistency identification in task-oriented dialogue(CI-ToD)can prevent inconsistent dialogue response generation,which has recently emerged as an important and growing research area.This paper takes the first step to explore a pre-training paradigm for CI-ToD.Nevertheless,pre-training for CI-ToD is non-trivial because it requires a large amount of multi-turn KB-grounded dialogues,which are extremely hard to collect.To alleviate the data scarcity problem for pre-training,we introduce a modularized pre-training framework(MPFToD),which is capable of utilizing large amounts of KB-free dialogues.Specifically,such modularization allows us to decouple CI-ToD into three sub-modules and propose three pre-training tasks including(i)query response matching pre-training;(ii)dialogue history consistent identification pre-training;and(iii)KB mask language modeling to enhance different abilities of CI-ToD model.As different sub-tasks are solved separately,MPFToD can learn from large amounts of KB-free dialogues for different modules,which are much easier to obtain.Results on the CI-ToD benchmark show that MPFToD pushes the state-of-the-art performance from 56.3%to 61.0%.Furthermore,we show its transferability with promising performance on other downstream tasks(i.e.,dialog act recognition,sentiment classification and table fact checking). 展开更多
关键词 task-oriented dialogue consistency identification modularized pre-training framework
原文传递
Recent advances and challenges in task-oriented dialog systems 被引量:14
11
作者 ZHANG Zheng TAKANOBU Ryuichi +2 位作者 ZHU Qi HUANG MinLie ZHU XiaoYan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期2011-2027,共17页
Due to the significance and value in human-computer interaction and natural language processing,task-oriented dialog systems are attracting more and more attention in both academic and industrial communities.In this p... Due to the significance and value in human-computer interaction and natural language processing,task-oriented dialog systems are attracting more and more attention in both academic and industrial communities.In this paper,we survey recent advances and challenges in task-oriented dialog systems.We also discuss three critical topics for task-oriented dialog systems:(1)improving data efficiency to facilitate dialog modeling in low-resource settings,(2)modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance,and(3)integrating domain ontology knowledge into the dialog model.Besides,we review the recent progresses in dialog evaluation and some widely-used corpora.We believe that this survey,though incomplete,can shed a light on future research in task-oriented dialog systems. 展开更多
关键词 task-oriented dialog systems natural language understanding dialog policy dialog state tracking natural language generation
原文传递
A Survey on Recent Advances and Challenges in Reinforcement Learning Methods for Task-oriented Dialogue Policy Learning 被引量:2
12
作者 Wai-Chung Kwan Hong-Ru Wang +1 位作者 Hui-Min Wang Kam-Fai Wong 《Machine Intelligence Research》 EI CSCD 2023年第3期318-334,共17页
Dialogue policy learning(DPL)is a key component in a task-oriented dialogue(TOD)system.Its goal is to decide the next action of the dialogue system,given the dialogue state at each turn based on a learned dialogue pol... Dialogue policy learning(DPL)is a key component in a task-oriented dialogue(TOD)system.Its goal is to decide the next action of the dialogue system,given the dialogue state at each turn based on a learned dialogue policy.Reinforcement learning(RL)is widely used to optimize this dialogue policy.In the learning process,the user is regarded as the environment and the system as the agent.In this paper,we present an overview of the recent advances and challenges in dialogue policy from the perspective of RL.More specifically,we identify the problems and summarize corresponding solutions for RL-based dialogue policy learning.In addition,we provide a comprehensive survey of applying RL to DPL by categorizing recent methods into five basic elements in RL.We believe this survey can shed light on future research in DPL. 展开更多
关键词 dialogue policy learning(DPL) task-oriented dialogue system(TOD) reinforcement learning(RL) dialogue system Markov decision process
原文传递
EVA2.0:Investigating Open-domain Chinese Dialogue Systems with Large-scale Pre-training 被引量:2
13
作者 Yuxian Gu Jiaxin Wen +8 位作者 Hao Sun Yi Song Pei Ke Chujie Zheng Zheng Zhang Jianzhu Yao Lei Liu Xiaoyan Zhu Minlie Huang 《Machine Intelligence Research》 EI CSCD 2023年第2期207-219,共13页
Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems.However,previous works mainly focus on showing and evaluating the conversational performance of the released dialogue ... Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems.However,previous works mainly focus on showing and evaluating the conversational performance of the released dialogue model,ignoring the discussion of some key factors towards a powerful human-like chatbot,especially in Chinese scenarios.In this paper,we conduct extensive experiments to investigate these under-explored factors,including data quality control,model architecture designs,training approaches,and decoding strategies.We propose EVA2.0,a large-scale pre-trained open-domain Chinese dialogue model with 2.8 billion parameters,and will make our models and codes publicly available.Automatic and human evaluations show that EVA2.0 significantly outperforms other open-source counterparts.We also discuss the limitations of this work by presenting some failure cases and pose some future research directions on large-scale Chinese open-domain dialogue systems. 展开更多
关键词 Natural language processing deep learning(DL) large-scale pre-training dialogue systems Chinese open-domain conversational model
原文传递
Unsupervised Dialogue State Tracking for End-to-End Task-Oriented Dialogue with a Multi-Span Prediction Network
14
作者 刘庆斌 何世柱 +2 位作者 刘操 刘康 赵军 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第4期834-852,共19页
This paper focuses on end-to-end task-oriented dialogue systems,which jointly handle dialogue state tracking(DST)and response generation.Traditional methods usually adopt a supervised paradigm to learn DST from a manu... This paper focuses on end-to-end task-oriented dialogue systems,which jointly handle dialogue state tracking(DST)and response generation.Traditional methods usually adopt a supervised paradigm to learn DST from a manually labeled corpus.However,the annotation of the corpus is costly,time-consuming,and cannot cover a wide range of domains in the real world.To solve this problem,we propose a multi-span prediction network(MSPN)that performs unsupervised DST for end-to-end task-oriented dialogue.Specifically,MSPN contains a novel split-merge copy mechanism that captures long-term dependencies in dialogues to automatically extract multiple text spans as keywords.Based on these keywords,MSPN uses a semantic distance based clustering approach to obtain the values of each slot.In addition,we propose an ontology-based reinforcement learning approach,which employs the values of each slot to train MSPN to generate relevant values.Experimental results on single-domain and multi-domain task-oriented dialogue datasets show that MSPN achieves state-of-the-art performance with significant improvements.Besides,we construct a new Chinese dialogue dataset MeDial in the low-resource medical domain,which further demonstrates the adaptability of MSPN. 展开更多
关键词 end-to-end task-oriented dialogue dialogue state tracking(DST) unsupervised learning reinforcement learning
原文传递
基于ABSA与动态少样本提示的主观知识对话回复生成模型 被引量:2
15
作者 饶东宁 庄杰涛 《计算机应用研究》 北大核心 2025年第6期1706-1712,共7页
在最新的任务导向型对话系统挑战中,有效利用主观知识(如个人见解)对于满足用户的特定需求至关重要。然而,由于此类知识具有个体主观性的特征,如何有效地整合和利用这些信息成为了研究的关键焦点。提出一种名为DynSense的方法,旨在解决... 在最新的任务导向型对话系统挑战中,有效利用主观知识(如个人见解)对于满足用户的特定需求至关重要。然而,由于此类知识具有个体主观性的特征,如何有效地整合和利用这些信息成为了研究的关键焦点。提出一种名为DynSense的方法,旨在解决从多条相关用户主观意见中生成全面且概括性回复的挑战。DynSense首先运用基于方面的情感分析(ABSA)技术来解析主观知识片段中的方面及其情感极性,并实现用户询问与知识片段的对齐。接着,利用先进对话模型结合对话上下文及经ABSA增强的信息生成回应。特别设计的DynMatch算法通过动态选择与当前查询最相似的高质量知识片段作为少样本提示(few-shot prompts),以引导模型生成更贴切的回复。实验结果表明,DynSense展现出对潜在语义特征和情感倾向的卓越捕捉能力,实现了精准、全面且高度贴合过往用户评价的回复。与现有模型相比,DynSense在SKTOD基准上的各项评估指标均有显著提升。 展开更多
关键词 任务导向型对话系统 主观知识 基于方面项的情感分析 动态少样本提示
在线阅读 下载PDF
基于改进生成对抗网络的翻译机器人智能对话系统研究
16
作者 邹强珍 《自动化与仪器仪表》 2025年第9期156-160,共5页
为实现翻译机器人的智能对话和翻译,研究提出了一种基于改进生成对抗网络的新系统。新系统引入注意力机制提升英语对话语义信息的抓取能力。研究设计了结合注意力机制的改进生成对抗网络架构,通过生成器和判别器的对抗训练优化语义生成... 为实现翻译机器人的智能对话和翻译,研究提出了一种基于改进生成对抗网络的新系统。新系统引入注意力机制提升英语对话语义信息的抓取能力。研究设计了结合注意力机制的改进生成对抗网络架构,通过生成器和判别器的对抗训练优化语义生成能力和对话自然度。并搭建了基于B/S架构的翻译机器人对话系统,实现语音问答、翻译和用户管理等功能,并评估了系统运行效果。研究结果表明,新系统在FutureBeeAI English General Conversational Text Dataset数据集中表现更好,其中新系统的BLEU值最高能够达到0.82,相较于RNN模型提升了0.27。同时新系统在不同数据集测试中其BLEU值也比RNN模型高了0.20。在系统对话翻译准确率中,新系统的准确率最高能够达到96.52%,相较于RNN提升了37.88%,且不同数据集测试中也比RNN高了23.44%。同时新系统相较于单一的生成对抗网络其BLEU值提升了0.30。同时使用新系统的机器人能够完成不同问题的对话和翻译。由此可见,研究构建的新系统能够实现翻译机器人的智能对话,并且具有很好的翻译和对话效果。 展开更多
关键词 生成对抗网络 翻译机器人 英语翻译 对话系统
原文传递
基于注意力胶囊网络的口语理解联合模型
17
作者 李维乾 杨卓琳 蒋良 《计算机与数字工程》 2025年第2期499-504,共6页
意图识别和语义槽填充是口语理解系统中的两项重要任务,将两项任务联合学习已成为一种趋势。然而,现有的联合模型在获得语句意图的同时对槽位进行序列标注,并没有明确保留字、词、槽位和意图之间的层次关系。论文设计了一种基于注意力... 意图识别和语义槽填充是口语理解系统中的两项重要任务,将两项任务联合学习已成为一种趋势。然而,现有的联合模型在获得语句意图的同时对槽位进行序列标注,并没有明确保留字、词、槽位和意图之间的层次关系。论文设计了一种基于注意力胶囊网络的口语理解联合模型。该模型对输入的字信息和词信息进行动态融合,充分考虑了口语理解中字词信息的重要性;通过自注意力路由和重路由实现意图与语义槽的双向信息流动。实验表明,该模型在CAIS和ECDT-NLU数据集得到了较好的结果,在CAIS上意图识别准确率达到94.82%,语义槽填充F1分数达到88.36%,在ECDT-NLU上意图识别准确率达到79.94%,语义槽填充F1分数达到49.62%,对比其他模型取得了较好的性能。 展开更多
关键词 对话系统 口语理解 意图识别 语义槽填充 注意力胶囊网络
在线阅读 下载PDF
基于槽依赖建模的跨领域槽填充方法 被引量:1
18
作者 王泽 周夏冰 +2 位作者 鞠鑫 王中卿 周国栋 《软件学报》 北大核心 2025年第4期1557-1569,共13页
作为任务型对话系统的一个核心部分,槽填充任务通过识别话语中存在的特定槽实体来服务于后续的下游任务.但是,针对一个特定领域,需要大量有标记的数据作为支撑,收集成本较高.在此背景下,跨领域槽填充任务出现,该任务通过迁移学习的方式... 作为任务型对话系统的一个核心部分,槽填充任务通过识别话语中存在的特定槽实体来服务于后续的下游任务.但是,针对一个特定领域,需要大量有标记的数据作为支撑,收集成本较高.在此背景下,跨领域槽填充任务出现,该任务通过迁移学习的方式高效地解决了数据稀缺问题.已有的跨领域槽填充方法都忽视了槽类型之间在话语中存在的依赖,导致现有的模型在迁移到新领域时性能欠佳.为了弥补这个缺陷,提出基于槽依赖建模的跨领域槽填充方法.基于生成式预训练模型的提示学习方法,设计一种融入槽依赖信息的提示模板,该模板建立了不同槽类型之间的隐式依赖关系,充分挖掘预训练模型的实体预测性能.此外,为了进一步提高槽类型和槽实体与话语文本之间的语义依赖,增加了话语填充子任务,通过反向填充的方式增强话语与槽实体的内在联系.通过对多个领域的迁移实验表明,所提模型在零样本和少样本的设置上取得了较大的性能提升.此外,对模型中的主要结构进行了详细地分析和消融实验. 展开更多
关键词 槽填充 对话系统 提示学习
在线阅读 下载PDF
基于大语言模型多轮对话的推荐模型研究 被引量:1
19
作者 常保发 车超 梁艳 《计算机科学与探索》 北大核心 2025年第2期385-395,共11页
近来结合大语言模型的推荐方法在提高推荐准确度和增强用户体验等方面展现出明显的优越性。然而这些方法存在没有充分利用用户信息、仅使用单轮对话无法学习用户多次交互的行为特征、大语言模型与推荐系统之间存在巨大的语义差异等问题... 近来结合大语言模型的推荐方法在提高推荐准确度和增强用户体验等方面展现出明显的优越性。然而这些方法存在没有充分利用用户信息、仅使用单轮对话无法学习用户多次交互的行为特征、大语言模型与推荐系统之间存在巨大的语义差异等问题。针对这些问题,提出了一个基于大语言模型多轮对话模式的推荐模型。该模型利用矢量量化技术将用户信息转化为用户索引,并通过微调任务把大语言模型的语言语义与推荐系统的协作语义整合,不仅学习了用户特征而且缓解了语义差异问题;将用户索引与历史交互数据拼接成提示语,再经过多轮对话机制进行推荐微调,从而学习用户交互行为之间的特征。模型在亚马逊Instructions、Arts和Games三个数据集上进行实验,结果表明模型在命中率(HR)和归一化折损累计增益(NDCG)两个评价指标上优于对比基线算法,在三个数据集上与最优对比基线算法相比,HR平均提升10.53%,NDCG平均提升5.10%,证明了模型的有效性。 展开更多
关键词 推荐系统 序列推荐 大语言模型 多轮对话机制
在线阅读 下载PDF
人文学科与文化强国建设(笔谈)
20
作者 林尚立 张桥 +1 位作者 杨慧林 张涛甫 《苏州大学学报(哲学社会科学版)》 北大核心 2025年第5期1-15,共15页
人文学科在文化强国建设征程中迎来历史性发展机遇,亟待构建与中国式现代化相适应的话语与知识体系。面对人工智能等科技革命带来的深刻变革,人文学科应主动拥抱研究方法创新,同时坚守价值理性,警惕技术应用可能带来的认知异化与工具化... 人文学科在文化强国建设征程中迎来历史性发展机遇,亟待构建与中国式现代化相适应的话语与知识体系。面对人工智能等科技革命带来的深刻变革,人文学科应主动拥抱研究方法创新,同时坚守价值理性,警惕技术应用可能带来的认知异化与工具化倾向。通过深化中外文明的对话式比较研究,能够有效破除文化隔阂,在互鉴中清晰阐释并重塑中华文明的独特肌理与普遍意义。必须明确,技术的终极价值在于服务人类,需确立以人为尺度的伦理规范,引导人工智能朝着有益于人类社会发展的方向演进。因此,推动科技与人文的深度融合、协同共荣,是新时代人文学科创新发展的根本路径。这要求人文学科在回应时代命题中激发活力,为民族复兴与全球治理贡献深层智慧。 展开更多
关键词 文化强国 人文学科 文化主体性 自主知识体系 人工智能 文明对话
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部