期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Leveraging Machine Learning to Predict Hospital Porter Task Completion Time
1
作者 You-Jyun Yeh Edward T.-H.Chu +2 位作者 Chia-Rong Lee Jiun Hsu Hui-Mei Wu 《Computers, Materials & Continua》 2025年第11期3369-3391,共23页
Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction ... Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction of completion times for porter tasks.To address this gap,we utilized real-world porter delivery data from Taiwan University Hospital,China,Yunlin Branch,Taiwan Region of China.We first identified key features that can influence the duration of porter tasks.We then employed three widely-used machine learning algorithms:decision tree,random forest,and gradient boosting.To leverage the strengths of each algorithm,we finally adopted an ensemble modeling approach that aggregates their individual predictions.Our experimental results show that the proposed ensemble model can achieve a mean absolute error of 3 min in predicting task response time and 4.42 min in task completion time.The prediction error is around 50%lower compared to using only the historical average.These results demonstrate that our method significantly improves the accuracy of porter task time prediction,supporting better resource planning and patient care.It helps ward staff streamline workflows by reducing delays,enables porter managers to allocate resources more effectively,and shortens patient waiting times,contributing to a better care experience. 展开更多
关键词 Machine learning hospital porter task completion time predictive models healthcare
在线阅读 下载PDF
Partitioning of Independent Tasks for Minimizing Completion Time and Total Waiting Time
2
作者 章中云 祝明发 李杰 《Journal of Computer Science & Technology》 SCIE EI CSCD 1991年第3期276-281,共6页
Parallel processors provide fast computing environments for various users.But the real efficiencies ofparallel processors intensively depend on the partitioning strategies of tasks over the processors.In thispaper,the... Parallel processors provide fast computing environments for various users.But the real efficiencies ofparallel processors intensively depend on the partitioning strategies of tasks over the processors.In thispaper,the partitioning problems of independent tasks for homogeneous system of parallel processors arequantitatively studied.We adopt two criteria,minimizing the completion time and the total waiting time,to determine the optimal partitioning strategy. 展开更多
关键词 In TH Partitioning of Independent tasks for Minimizing completion time and Total Waiting time
原文传递
Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme for Cloud Environment
3
作者 R.Rengaraj K.Latha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1923-1937,共15页
In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance... In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance delivery.Task execution failure becomes common in the CC environment.Therefore,fault-tolerant scheduling techniques in CC environment are essential for handling performance differences,resourcefluxes,and failures.Recently,several intelli-gent scheduling approaches have been developed for scheduling tasks in CC with no consideration of fault tolerant characteristics.With this motivation,this study focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme(GTO-FTASS)in CC environment.The proposed GTO-FTASS model aims to schedule the tasks and allocate resources by considering fault tolerance into account.The GTO-FTASS algorithm is based on the social intelligence nature of gorilla troops.Besides,the GTO-FTASS model derives afitness function involving two parameters such as expected time of completion(ETC)and failure probability of executing a task.In addition,the presented fault detector can trace the failed tasks or VMs and then schedule heal submodule in sequence with a remedial or retrieval scheduling model.The experimental vali-dation of the GTO-FTASS model has been performed and the results are inspected under several aspects.Extensive comparative analysis reported the better outcomes of the GTO-FTASS model over the recent approaches. 展开更多
关键词 Cloud computing gorilla troops optimizer task scheduling fault tolerant task completion time failure probability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部