The evolvable multiprocessor (EvoMP), as a novel multiprocessor system-on-chip (MPSoC) machine with evolvable task decomposition and scheduling, claims a major feature of low-cost and efficient fault tolerance. Non-ce...The evolvable multiprocessor (EvoMP), as a novel multiprocessor system-on-chip (MPSoC) machine with evolvable task decomposition and scheduling, claims a major feature of low-cost and efficient fault tolerance. Non-centralized control and adaptive distribution of the program among the available processors are two major capabilities of this platform, which remarkably help to achieve an efficient fault tolerance scheme. This letter presents the operational as well as architectural details of this fault tolerance scheme. In this method, when a processor becomes faulty, it will be eliminated of contribution in program execution in remaining run-time. This method also utilizes dynamic rescheduling capability of the system to achieve the maximum possible efficiency after processor reduction. The results confirm the efficiency and remarkable advantages of the proposed approach over common redundancy based techniques in similar systems.展开更多
A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the ...A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.展开更多
Human activity recognition(HAR)for dense prediction is proven to be of good performance,but it relies on labeling every point in time series with the high cost.In addition,the performance of HAR model will show signif...Human activity recognition(HAR)for dense prediction is proven to be of good performance,but it relies on labeling every point in time series with the high cost.In addition,the performance of HAR model will show significant degradation when tested on the sensor data with different distribution from the training data,where the training data and the test data are usually collected from different sensor locations or sensor users.Therefore,the adaptive transfer learning framework for dense prediction of HAR is introduced to implement cross-domain transfer,where the proposed multi-level unsupervised domain adaptation(MLUDA)approach combines the global domain adaptation and the specific task adaptation to adapt the source and target domain in multiple levels.The multi-connected global domain adaptation architecture is proposed for the first time,which can adapt the output layer of the encoder and the decoder in dense prediction model.After this,the specific task adaptation is proposed to ensure alignment of each class centroid in source domain and target domain by introducing the cosine distance loss and the moving average method.Experiments on three public HAR datasets demonstrate that the proposed MLUDA improves the prediction accuracy of target data by 20%compared to the source domain pre-trained model and it is more effective than the other three deep transfer learning methods with an improvement of 10%to 18%in accuracy.展开更多
文摘The evolvable multiprocessor (EvoMP), as a novel multiprocessor system-on-chip (MPSoC) machine with evolvable task decomposition and scheduling, claims a major feature of low-cost and efficient fault tolerance. Non-centralized control and adaptive distribution of the program among the available processors are two major capabilities of this platform, which remarkably help to achieve an efficient fault tolerance scheme. This letter presents the operational as well as architectural details of this fault tolerance scheme. In this method, when a processor becomes faulty, it will be eliminated of contribution in program execution in remaining run-time. This method also utilizes dynamic rescheduling capability of the system to achieve the maximum possible efficiency after processor reduction. The results confirm the efficiency and remarkable advantages of the proposed approach over common redundancy based techniques in similar systems.
基金supported by“Regional Innovation Strategy (RIS)”through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (MOE) (2021RIS-004).
文摘A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.
基金supported by the State Major Science and Technology Special Projects (2014ZX03004002)Fab. X Artificial Intelligence Research Center,Beijing,P. R. C.
文摘Human activity recognition(HAR)for dense prediction is proven to be of good performance,but it relies on labeling every point in time series with the high cost.In addition,the performance of HAR model will show significant degradation when tested on the sensor data with different distribution from the training data,where the training data and the test data are usually collected from different sensor locations or sensor users.Therefore,the adaptive transfer learning framework for dense prediction of HAR is introduced to implement cross-domain transfer,where the proposed multi-level unsupervised domain adaptation(MLUDA)approach combines the global domain adaptation and the specific task adaptation to adapt the source and target domain in multiple levels.The multi-connected global domain adaptation architecture is proposed for the first time,which can adapt the output layer of the encoder and the decoder in dense prediction model.After this,the specific task adaptation is proposed to ensure alignment of each class centroid in source domain and target domain by introducing the cosine distance loss and the moving average method.Experiments on three public HAR datasets demonstrate that the proposed MLUDA improves the prediction accuracy of target data by 20%compared to the source domain pre-trained model and it is more effective than the other three deep transfer learning methods with an improvement of 10%to 18%in accuracy.