We introduce a scheme aiming at the generation of quasi-monochromatic carbon ion bunches from laser-solid interaction.The proposed scheme is an extension of the“peeler”acceleration originally proposed for proton acc...We introduce a scheme aiming at the generation of quasi-monochromatic carbon ion bunches from laser-solid interaction.The proposed scheme is an extension of the“peeler”acceleration originally proposed for proton acceleration,which involves irradiating the narrow(submicrometer)side of a tape target.This results in the generation of a surface plasma wave and the subsequent acceleration of a proton bunch with high peak energy,quasi-monochromaticity,low energy bandwidth,and low divergence by the electrostatic field induced at the target rear.Up to now,the higher-Z(e.g.,carbon)ion bunches obtained with the peeler scheme have been found to exhibit an exponentially decaying thermal-like energy spectrum.To achieve a low energy bandwidth,we place a mass-limited carbon structure at the rear of the target.Using 3D particle-in-cell simulations,we show that a quasi-monochromatic carbon bunch can indeed be obtained.With a multi-PW laser pulse,10^(8) carbon ions with peak energy~110 MeV/u and with a divergence of 20° in the vertical plane and~1° in the horizontal plane can be generated.The quasi-monochromaticity,together with the low duration of the beam and in combination with the versatility of high-power laser facilities,should make this scheme attractive for practical applications such as heavy ion cancer therapy and higher-resolution diagnostics of extreme plasma states.展开更多
基金the support of the Romanian Government and the European Union through the European Regional Development Fund–the Competitiveness Operational Programme (1/07.07.2016, COP, Grant ID No. 1334) Phases Ⅱthe Romanian Ministry of Research, Innovation and Digitalization: Program Nucleu Grant No. PN23210105+6 种基金supported by the IOSIN Funds for Research Infrastructures of National Interest funded by the Romanian Ministry of Research, Innovation and Digitalizationsupported by Project No. ELI-RO/DFG/2023_001 ARNPhot funded by the Institute of Atomic Physics (Romania), the European Union, the Romanian Governmentthe Health Program, within the project “Medical Applications of High-Power Lasers–Dr. LASER,” SMIS Code 326475by Grant Nos. ELI-RO/RDI/2024_14 SPARC and ELI-RO/RDI/2024_8 AMAPBMBF Grant No. 05P24PF2 (Germany)the EuroHPC Joint Undertaking for awarding us access to Karolina at IT4Innovations (VAB-TU), Czechia under Project No. EHPCREG-2023R02-006 (Grant No. DD-23-157)Ministry of Education, Youth and Sports of the Czech Republic through e-INFRA CZ (Grant ID No. 90140)
文摘We introduce a scheme aiming at the generation of quasi-monochromatic carbon ion bunches from laser-solid interaction.The proposed scheme is an extension of the“peeler”acceleration originally proposed for proton acceleration,which involves irradiating the narrow(submicrometer)side of a tape target.This results in the generation of a surface plasma wave and the subsequent acceleration of a proton bunch with high peak energy,quasi-monochromaticity,low energy bandwidth,and low divergence by the electrostatic field induced at the target rear.Up to now,the higher-Z(e.g.,carbon)ion bunches obtained with the peeler scheme have been found to exhibit an exponentially decaying thermal-like energy spectrum.To achieve a low energy bandwidth,we place a mass-limited carbon structure at the rear of the target.Using 3D particle-in-cell simulations,we show that a quasi-monochromatic carbon bunch can indeed be obtained.With a multi-PW laser pulse,10^(8) carbon ions with peak energy~110 MeV/u and with a divergence of 20° in the vertical plane and~1° in the horizontal plane can be generated.The quasi-monochromaticity,together with the low duration of the beam and in combination with the versatility of high-power laser facilities,should make this scheme attractive for practical applications such as heavy ion cancer therapy and higher-resolution diagnostics of extreme plasma states.