Objective:Plant-derived cytotoxic transgene expression,such as trichosanthin(tcs),regulated by recombinant adeno-associated virus(r AAV)vector is a promising cancer gene therapy.However,the cytotoxic transgene can ham...Objective:Plant-derived cytotoxic transgene expression,such as trichosanthin(tcs),regulated by recombinant adeno-associated virus(r AAV)vector is a promising cancer gene therapy.However,the cytotoxic transgene can hamper the vector production in the r AAV producer cell line,human embryonic kidney(HEK293)cells.Here,we explored micro RNA-122(miR122)and its target sequence to limit the expression of the cytotoxic gene in the r AAV producer cells.Methods:A miR122 target(122 T)sequence was incorporated into the 30 untranslated region of the tcs c DNA sequence.The firefly luciferase(fluc)transgene was used as an appropriate control.Cell line HEK293-mir122 was generated by the lentiviral vector-mediated genome integration of the mir122 gene in parental HEK293 cells.The effects of miR122 overexpression on cell growth,transgene expression,and r AAV production were determined.Results:The presence of 122 T sequence significantly reduced transgene expression in the miR122-enriched Huh7 cell line(in vitro),fresh human hepatocytes(ex vivo),and mouse liver(in vivo).Also,the normal liver physiology was unaffected by delivery of 122 T sequence by r AAV vectors.Compared with the parental cells,the miR122-overexpressing HEK293-mir122 cell line showed similar cell growth rate and expression of transgene without 122 T,as well as the ability to produce liver-targeting r AAV vectors.Fascinatingly,the yield of r AAV vectors carrying the tcs-122 T gene was increased by 77.7-fold in HEK293-mir122 cells.Moreover,the tcs-122 T-containing r AAV vectors significantly reduced the proliferation of hepatocellular carcinoma cells without affecting the normal liver cells.Conclusion:HEK293-mir122 cells along with the 122 T sequence provide a potential tool to attenuate the cytotoxic transgene expression,such as tcs,during r AAV vector production.展开更多
The high-tech listed firms are not only representative for mainstream of nongovernmental businesses, but also afflux new livingness into the capital market development in China. By considering our country's high-tech...The high-tech listed firms are not only representative for mainstream of nongovernmental businesses, but also afflux new livingness into the capital market development in China. By considering our country's high-tech listed firms as study object, we have disclosed different degree between diverse financial targets and business value, built a financial targets sequence model of impact on business value. The study supplies a certain extent reference to valid supervising and exalting of firms' financial core.展开更多
Genotyping by target sequencing(GBTS)integrates the advantages of silicon-based technology(high stability and reliability)and genotyping by sequencing(high flexibility and cost-effectiveness).However,GBTS panels are n...Genotyping by target sequencing(GBTS)integrates the advantages of silicon-based technology(high stability and reliability)and genotyping by sequencing(high flexibility and cost-effectiveness).However,GBTS panels are not currently available in pigs.In this study,based on GBTS technology,we first developed a 50K panel,including 52,000 single-nucleotide polymorphisms(SNPs),in pigs,designated GBTS50K.A total of 6,032 individuals of Large White,Landrace,and Duroc pigs from 10 breeding farms were used to assess the newly developed GBTS50K.Our results showed that GBTS50K obtained a high genotyping ability,the SNP and individual call rates of GBTS50K were 0.997–0.998,and the average consistency rate and genotyping correlation coefficient were 0.997 and 0.993,respectively,in replicate samples.We also evaluated the efficiencies of GBTS50K in the application of population genetic structure analysis,selection signature detection,genome-wide association studies(GWAS),genotyped imputation,genetic selection(GS),etc.The results indicate that GBTS50K is plausible and powerful in genetic analysis and molecular breeding.For example,GBTS50K could gain higher accuracies than the current popular GGP-Porcine bead chip in genomic selection on 2 important traits of backfat thickness at 100 kg and days to 100 kg in pigs.Particularly,due to the multiple SNPs(mSNPs),GBTS50K generated 100K qualified SNPs without increasing genotyping cost,and our results showed that the haplotype-based method can further improve the accuracies of genomic selection on growth and reproduction traits by 2 to 6%.Our study showed that GBTS50K could be a powerful tool for underlying genetic architecture and molecular breeding in pigs,and it is also helpful for developing SNP panels for other farm animals.展开更多
Genotyping by Target Sequencing(GBTS)technology,known for its flexibility,high efficiency,high throughput,and low cost,has been increasingly employed in molecular breeding.However,there is still limited study on the d...Genotyping by Target Sequencing(GBTS)technology,known for its flexibility,high efficiency,high throughput,and low cost,has been increasingly employed in molecular breeding.However,there is still limited study on the design and development of high-throughput genotyping tools in watermelon.In this study,we identified 112000 high quality SNPs by analyzing the resequencing data of 43 cultivated watermelon accessions.11921 and 6094 SNPs were selected for developing two sets of watermelon liquid-phase chips with different marker densities,named Watermelon 10K and 5K,respectively.Furthermore,the SNPs and Indels of most mapped gene/QTLs for many agronomic important traits in watermelon were also integrated into the two chips for foreground selection.These chips have been tested using GBTS technology in various applications in watermelon.The genotyping of 76 accessions by Watermelon 5K liquid-phase chip showed an average detection rate of 99.28%and 81.78%for cultivated and wild watermelon accessions,respectively.This provided enough markers information for GWAS and two significant QTLs,ssc1.1 and ssc1.2,associated with soluble sugar content were detected.Furthermore,BSA-seq analysis for non-lobed leaf and dwarf traits were validated by liquid-phase chips,and the candidate region was consistent with our previous studies.Additionally,we precisely introduced the Cldw1 and Clbl genes into an elite inbred line WT2 using Watermelon 5K for assisted selection,resulting in the development of three new germplasm with good plant architecture.As a high-throughput genotyping liquid-phase SNP array,the Watermelon 10K and 5K chips will greatly facilitate functional studies and molecular breeding in watermelon.展开更多
AIM:To estimate if nanopore targeted sequencing(NTS)could identify pathogens causing postoperative endophthalmitis and further determine the feasibility of clinical application of NTS.METHODS:A total of 55 patients(55...AIM:To estimate if nanopore targeted sequencing(NTS)could identify pathogens causing postoperative endophthalmitis and further determine the feasibility of clinical application of NTS.METHODS:A total of 55 patients(55 eyes)with postoperative endophthalmitis were retrospectively included in this study with their medical records.Intraocular fluid samples were examined by NTS and microbial culture.All included patients had undergone examinations including measurement of best corrected visual acuity(BCVA)and intraocular pressure(IOP),slit-lamp biomicroscopy,and indirect ophthalmoscopy;additionally,they underwent B-ultrasound,anterior segment photography,and fundus photography if necessary.RESULTS:Among 55 patients with postoperative endophthalmitis,the age was 65.25±15.04y and there were 30 female(54.54%)patients.Forty-one(74.54%)vitreous humor samples and fourteen(25.45%)aqueous humor samples were sent for both NTS and microbial culture.NTS had a notable higher detection rate than microbial culture in detecting pathogens(90.91%vs 38.18%,χ^(2)=33.409,P<0.001).NTS exhibited high sensitivity of pathogen detection in both microbial culture positive and negative samples(100%and 85.29%,respectively).In 16 of 21(76.19%)patients who showed culture-positivity,their results corresponded with those of NTS.Moreover,in two patients(9.52%),NTS showed a better species resolution than microbial culture;in three patients(14.28%),NTS identified additional pathogens.As for fungus,the positive detection rate of NTS was significantly higher than that of microbial culture(20%vs 3.64%,χ^(2)=7.066,P=0.008).Also,NTS could detect multi-infection by bacteria and fungi than microbial culture(32.73%vs 0,χ^(2)=21.522,P<0.001).NTS could detect bacteria as well as fungi simultaneously within 48h in all patients.Meanwhile,NTS had a shorter detection time than microbial culture(1.13±0.34 vs 2.67±0.55d,Z=-9.218,P<0.001).After the NTS results were obtained,15 patients received additional intravitreal/intracameral anti-infection treatment.At follow-up,there was a statistically significant improvement in the visual acuity relative to the baseline(Z=−5.222,P<0.001).CONCLUSION:NTS can provide rapid identification and highly sensitive detection of pathogens among patients with postoperative endophthalmitis,which can guide anti-infection treatment and improve visual prognosis.展开更多
Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation...Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies.展开更多
This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future ...This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demon- strated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.展开更多
Different newborn screening(NBS) programs have been practiced in many countries since the 1960 s. It is of considerable interest whether next-generation sequencing is applicable in NBS. We have developed a panel of 46...Different newborn screening(NBS) programs have been practiced in many countries since the 1960 s. It is of considerable interest whether next-generation sequencing is applicable in NBS. We have developed a panel of 465 causative genes for 596 early-onset, relatively high incidence, and potentially actionable severe inherited diseases in our Newborn Screening with Targeted Sequencing(NESTS) program to screen 11,484 babies in 8 Women and Children’s hospitals nationwide in China retrospectively. The positive rate from preliminary screening of NESTS was 7.85%(902/11,484). With 45.89%(414/902) follow-up of preliminary positive cases, the overall clinically confirmative diagnosis rate of monogenic disorders was 12.07%(50/414), estimating an average of 0.95%(7.85% × 12.07%) clinical diagnosis rate, suggesting that monogenic disorders account for a considerable proportion of birth defects. The disease/gene spectrum varied in different regions of China. NESTS was implemented in a hospital by screening 3923 newborns to evaluate its clinical application. The turn-around time of a primary report, including the sequencing period of < 7 days, was within 11 days by our automatic interpretation pipeline. Our results suggest that NESTS is feasible and cost-effective as a first-tier NBS program, which will change the status of current clinical practice of NBS in China.展开更多
46,XY disorders of sex development(DSD)is characterized by incomplete masculinization genitalia,with gonadal dysplasia and with/without the presence of Mullerian structures.At least 30 genes related to 46,XY DSD have ...46,XY disorders of sex development(DSD)is characterized by incomplete masculinization genitalia,with gonadal dysplasia and with/without the presence of Mullerian structures.At least 30 genes related to 46,XY DSD have been found.However,the clinical phenotypes of patients with different gene mutations overlap,and accurate diagnosis relies on gene sequencing technology.Therefore,this study aims to determine the prevalence of pathogenic mutations in a Chinese cohort with 46,XY DSD by the targeted nextgeneration sequencing(NGS)technology.Eighty-seven 46,XY DSD patients were enrolled from the Peking Union Medical College Hospital(Beijing,China).A total of fifty-four rare variants were identified in 60 patients with 46,XY DSD.The incidence of these rare variants was approximately 69.0%(60/87).Twenty-five novel variants and 29 reported variants were identified.Based on the American College of Medical Genetics and Genomics(ACMG)guidelines,thirty-three variants were classified as pathogenic or likely pathogenic variants and 21 variants were assessed as variants of uncertain significance.The overall diagnostic rate was about 42.5%based on the pathogenic and likely pathogenic variants.Androgen receptor{AR),steroid 5-alpha-reductase 2(SRD5A2)and nuclear receptor subfamily 5 Group A member 1(NR5A1)gene variants were identified in 21,13 and 13 patients,respectively.The incidence of these three gene variants was about 78.3%(47/60)in patients with rare variants.It is concluded that targeted NGS is an effective method to detect pathogenic mutations in 46,XY DSD patients and AR,SRD5A2,and NR5A1 genes were the most common pathogenic genes in our cohort.展开更多
Objective This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing(tNGS)of bronchoalveolar lavage fluid(BALF)in pulmonary mycobacterial infections.Methods This retrospect...Objective This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing(tNGS)of bronchoalveolar lavage fluid(BALF)in pulmonary mycobacterial infections.Methods This retrospective study was conducted on patients who underwent bronchoscopy and tNGS,smear microscopy,and mycobacterial culture of BALF.Patients with positive Mycobacterium tuberculosis(MTB)culture or GeneXpert results were classified into the tuberculosis case group.Those diagnosed with nontuberculous mycobacteria(NTM)-pulmonary disease(NTM-PD)composed the case group of NTM-PD patients.The control group comprised patients without tuberculosis or NTM-PD.Sensitivity,specificity,and receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance.Results For tuberculosis patients with positive mycobacterial culture results,the areas under the ROC curves(AUCs)for tNGS,GeneXpert,and smear microscopy were 0.975(95%CI:0.935,1.000),0.925(95%CI:0.859,0.991),and 0.675(95%CI:0.563,0.787),respectively.For tuberculosis patients with positive GeneXpert results,the AUCs of tNGS,culture,and smear microscopy were 0.970(95%CI:0.931,1.000),0.850(95%CI:0.770,0.930),and 0.680(95%CI:0.579,0.781),respectively.For NTM-PD,the AUCs of tNGS,culture,and smear-positive but GeneXpert-negative results were 0.987(95%CI:0.967,1.000),0.750(95%CI:0.622,0.878),and 0.615(95%CI:0.479,0.752),respectively.The sensitivity and specificity of tNGS in NTM-PD patients were 100%and 97.5%,respectively.Conclusion tNGS demonstrated superior diagnostic efficacy in mycobacterial infection,indicating its potential for clinical application.展开更多
AIM:To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis(LCA) in Chinese.METHODS:LCA subjects and their families were retrospectively collected from 2013 to 20...AIM:To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis(LCA) in Chinese.METHODS:LCA subjects and their families were retrospectively collected from 2013 to 2015.Firstly,whole-exome sequencing was performed in patients who had underwent gene mutation screening with nothing found,and then homozygous sites was selected,candidate sites were annotated,and pathogenic analysis was conducted using softwares including Sorting Tolerant from Intolerant(SIFT),Polyphen-2,Mutation assessor,Condel,and Functional Analysis through Hidden Markov Models(FATHMM).Furthermore,Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of pathogenic genes were performed followed by co-segregation analysis using Fisher exact Test.Sanger sequencing was used to validate single-nucleotide variations(SNVs).Expanded verification was performed in the rest patients.RESULTS:Totally 51 LCA families with 53 patients and24 family members were recruited.A total of 104 SNVs(66 LCA-related genes and 15 co-segregated genes)were submitted for expand verification.The frequencies of homozygous mutation of KRT12 and CYP1A1 were simultaneously observed in 3 families.Enrichment analysis showed that the potential pathogenic genes were mainly enriched in functions related to cell adhesion,biological adhesion,retinoid metabolic process,and eye development biological adhesion.Additionally,WFS7 and STAU2 had the highest homozygous frequencies.CONCLUSION:LCA is a highly heterogeneous disease.Mutations in KRT12,CVP1A1,WFS1,and STAU2 may be involved in the development of LCA.展开更多
Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean ...Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean lines(Yundou 8137,H0003712,and H000572)as parents and constructed two F2 populations.These two F2 populations,namely 167 F2 plants in Pop1(Yundou 8137×H0003712)and 204 F2 plants in Pop2(H000572×Yundou 8137),were genotyped using a targeted next-generation sequencing(TNGS)genotyping platform,and two high-density single nucleotide polymorphisms(SNP)genetic linkage maps of faba bean were constructed.The map constructed from Pop1 contained 5103 SNPs with a length of 1333.31 cM and an average marker density of 0.26 cM.The map constructed from Pop2 contained 1904 SNPs with a greater length of 1610.61 cM.In these two F2 populations,QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers,pods,plant types and grains.The two maps were then merged into an integrated genetic linkage map containing 6895 SNPs,with a length of 3324.48 cM.These results not only lay the foundation for fine mapping and map-based cloning of related genes,but can also accelerate the molecular marker-assisted breeding of faba bean.展开更多
Endophthalmitis is a serious ophthalmic disease characterized by changes in the eye's posterior segment,such as hypopyon and intraocular inflammation,vitritis being a hallmark.Infection-caused endophthalmitis can ...Endophthalmitis is a serious ophthalmic disease characterized by changes in the eye's posterior segment,such as hypopyon and intraocular inflammation,vitritis being a hallmark.Infection-caused endophthalmitis can lead to irreversible vision loss,accompanied by eye pain or eye distention,and in the most severe cases the removal of the eyeball.Microorganisms such as bacteria,fungi,viruses,and parasites typically account for the disease and the entry pathways of the microbial can be divided into either endogenous or exogenous approaches,according to the origin of the etiological agents.Exogenous endophthalmitis can be derived from various occasions(such as postoperative complications or trauma)while endogenous endophthalmitis results from the bloodstream which carries pathogens to the eye.This review aims to summarize the application of new technology in pathogen identification of endophthalmitis so as to prevent the disease and better guide clinical diagnosis and treatment.展开更多
Objective Thrombotic thrombocytopenic purpura(TTP)is a rare and fatal disease caused by a severe deficiency in the metalloprotease ADAMTS13 and is characterized by thrombotic microangiopathy.The present study aimed to...Objective Thrombotic thrombocytopenic purpura(TTP)is a rare and fatal disease caused by a severe deficiency in the metalloprotease ADAMTS13 and is characterized by thrombotic microangiopathy.The present study aimed to investigate the genes and variants associated with TTP in a Chinese population.Methods Target sequencing was performed on 220 genes related to complements,coagulation factors,platelets,fibrinolytic,endothelial,inflammatory,and anticoagulation systems in 207 TTP patients and 574 controls.Subsequently,logistic regression analysis was carried out to identify the TTP-associated genes based on the counts of rare deleterious variants in the region of a certain gene.Moreover,the associations between common variants and TTP were also investigated.Results ADAMTS13 was the only TTP-associated gene(OR=3.77;95%CI:1.82–7.81;P=3.6×10^(-4))containing rare deleterious variants in TTP patients.Among these 8 variants,5 novel rare variants that might contribute to TTP were identified,including rs200594025,rs782492477,c.T1928G(p.I643S),c.3336_3361del(p.Q1114Afs*20),and c.3469_3470del(p.A1158Sfs*17).No common variants associated with TTP were identified under the stringent criteria of correction for multiple testing.Conclusion ADAMTS13 is the primary gene related to TTP.The genetic variants associated with the occurrence of TTP were slightly different between the Chinese and European populations.展开更多
BACKGROUND Scrub typhus is a naturally occurring acute infectious disease that is primarily transmitted through the bites of chiggers or larval mites infected by Orientia tsutsugamushi(O.tsutsugamushi).Omadacycline,a ...BACKGROUND Scrub typhus is a naturally occurring acute infectious disease that is primarily transmitted through the bites of chiggers or larval mites infected by Orientia tsutsugamushi(O.tsutsugamushi).Omadacycline,a novel tetracycline,exhibits potent antibacterial efficacy against both typical bacteria and atypical pathogens.However,omadacycline application in the treatment of scrub typhus remains limited.CASE SUMMARY In the present work,we report several cases of scrub typhus,with the main clinical symptoms being fever,the formation of eschars or ulcers,local or systemic lymphadenopathy,headache,myalgia and rash.Blood samples were collected before omadacycline was administered,and O.tsutsugamushi infection was confirmed through targeted next-generation sequencing(tNGS).After two days of treatment,the patients’symptoms,including fever,were alleviated,with no adverse drug reactions.CONCLUSION tNGS is an effective method for diagnosing scrub typhus.Omadacycline can be considered an alternative option for antiinfective therapy in patients with O.tsutsugamushi infections.展开更多
In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process...In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming(MINLP) problem,which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network(HEN) and the refrigeration system(RS). The method presented in the paper can dramatically reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to illustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging.展开更多
Objective Unbiased next generation sequencing(NGS) is susceptible to interference from host or environmental sequences. Consequently, background depletion and virome enrichment techniques are usually needed for clin...Objective Unbiased next generation sequencing(NGS) is susceptible to interference from host or environmental sequences. Consequently, background depletion and virome enrichment techniques are usually needed for clinical samples where viral load is much lower than background sequences. Methods A viral Sequence Independent Targeted Amplification(VSITA) approach using a set of non-ribosomal and virus-enriched octamers(V8) was developed and compared with traditionally used random hexamers(N6). Forty-five archived clinical samples of different types were used in parallel to compare the V8 and N6 enrichment performance of viral sequences and removal performance of ribosomal sequences in the step of reverse transcription followed by quantitative PCR(qP CR). Ten sera samples from patients with fever of unknown origin and 10 feces samples from patients with diarrhea of unknown origin were used in comparison of V8 and N6 enrichment performance following NGS analysis. Results A minimum 30 hexamers matching to viral reference sequences(sense and antisense) were selected from a dataset of random 4,096(4~6) hexamers(N6). Two random nucleotides were added to the 5' end of the selected hexamers, and 480(30 × 4~2) octamers(V8) were obtained. In general, VSITA approach showed higher enrichment of virus-targeted c DNA and enhanced ability to remove unwanted ribosomal sequences in the majorities of 45 predefined clinical samples. Moreover, VSITA combined with NGS enabled to detect not only more viruses but also achieve more viral reads hit and higher viral genome coverage in 20 clinical samples with diarrhea or fever of unknown origin. Conclusion The VSITA approach designed in this study is demonstrated to possess higher sensitivity and broader genome coverage than traditionally used random hexamers in the NGS-based identification of viral pathogens directly from clinical samples.展开更多
基金supported by the China Postdoctoral Science Foundation(No.2019M651381)the Shanghai Talent Development Funding(No.2019115)to Chen Zhong。
文摘Objective:Plant-derived cytotoxic transgene expression,such as trichosanthin(tcs),regulated by recombinant adeno-associated virus(r AAV)vector is a promising cancer gene therapy.However,the cytotoxic transgene can hamper the vector production in the r AAV producer cell line,human embryonic kidney(HEK293)cells.Here,we explored micro RNA-122(miR122)and its target sequence to limit the expression of the cytotoxic gene in the r AAV producer cells.Methods:A miR122 target(122 T)sequence was incorporated into the 30 untranslated region of the tcs c DNA sequence.The firefly luciferase(fluc)transgene was used as an appropriate control.Cell line HEK293-mir122 was generated by the lentiviral vector-mediated genome integration of the mir122 gene in parental HEK293 cells.The effects of miR122 overexpression on cell growth,transgene expression,and r AAV production were determined.Results:The presence of 122 T sequence significantly reduced transgene expression in the miR122-enriched Huh7 cell line(in vitro),fresh human hepatocytes(ex vivo),and mouse liver(in vivo).Also,the normal liver physiology was unaffected by delivery of 122 T sequence by r AAV vectors.Compared with the parental cells,the miR122-overexpressing HEK293-mir122 cell line showed similar cell growth rate and expression of transgene without 122 T,as well as the ability to produce liver-targeting r AAV vectors.Fascinatingly,the yield of r AAV vectors carrying the tcs-122 T gene was increased by 77.7-fold in HEK293-mir122 cells.Moreover,the tcs-122 T-containing r AAV vectors significantly reduced the proliferation of hepatocellular carcinoma cells without affecting the normal liver cells.Conclusion:HEK293-mir122 cells along with the 122 T sequence provide a potential tool to attenuate the cytotoxic transgene expression,such as tcs,during r AAV vector production.
文摘The high-tech listed firms are not only representative for mainstream of nongovernmental businesses, but also afflux new livingness into the capital market development in China. By considering our country's high-tech listed firms as study object, we have disclosed different degree between diverse financial targets and business value, built a financial targets sequence model of impact on business value. The study supplies a certain extent reference to valid supervising and exalting of firms' financial core.
基金supported by the grants from the Key R&D Program of Shandong Province,China(2022LZGC003)the China Agriculture Research System of MOF and MARA(CARS-35)+1 种基金the National Key Research and Development Project of China(2019YFE0106800)the 2115 Talent Development Program of China Agricultural University。
文摘Genotyping by target sequencing(GBTS)integrates the advantages of silicon-based technology(high stability and reliability)and genotyping by sequencing(high flexibility and cost-effectiveness).However,GBTS panels are not currently available in pigs.In this study,based on GBTS technology,we first developed a 50K panel,including 52,000 single-nucleotide polymorphisms(SNPs),in pigs,designated GBTS50K.A total of 6,032 individuals of Large White,Landrace,and Duroc pigs from 10 breeding farms were used to assess the newly developed GBTS50K.Our results showed that GBTS50K obtained a high genotyping ability,the SNP and individual call rates of GBTS50K were 0.997–0.998,and the average consistency rate and genotyping correlation coefficient were 0.997 and 0.993,respectively,in replicate samples.We also evaluated the efficiencies of GBTS50K in the application of population genetic structure analysis,selection signature detection,genome-wide association studies(GWAS),genotyped imputation,genetic selection(GS),etc.The results indicate that GBTS50K is plausible and powerful in genetic analysis and molecular breeding.For example,GBTS50K could gain higher accuracies than the current popular GGP-Porcine bead chip in genomic selection on 2 important traits of backfat thickness at 100 kg and days to 100 kg in pigs.Particularly,due to the multiple SNPs(mSNPs),GBTS50K generated 100K qualified SNPs without increasing genotyping cost,and our results showed that the haplotype-based method can further improve the accuracies of genomic selection on growth and reproduction traits by 2 to 6%.Our study showed that GBTS50K could be a powerful tool for underlying genetic architecture and molecular breeding in pigs,and it is also helpful for developing SNP panels for other farm animals.
基金supported by the National Natural Science Foundation of China(Grant Nos.32172602,32472739)the Major Science and Technology Project of Henan Province(Grant No.221100110400)+3 种基金the Funding of Joint Research on Agricultural Varietie Improvement of Henan Province(Grant No.2022010503)the Natural Science Foundation of Henan(Grant No.242300421030)the Key Scientifc and Technological Project of Henan Province(Grant Nos.242102111124,242102111115)the Key Research and Development Program of Xinjiang Uygur autonomous region(2023B02017-2).
文摘Genotyping by Target Sequencing(GBTS)technology,known for its flexibility,high efficiency,high throughput,and low cost,has been increasingly employed in molecular breeding.However,there is still limited study on the design and development of high-throughput genotyping tools in watermelon.In this study,we identified 112000 high quality SNPs by analyzing the resequencing data of 43 cultivated watermelon accessions.11921 and 6094 SNPs were selected for developing two sets of watermelon liquid-phase chips with different marker densities,named Watermelon 10K and 5K,respectively.Furthermore,the SNPs and Indels of most mapped gene/QTLs for many agronomic important traits in watermelon were also integrated into the two chips for foreground selection.These chips have been tested using GBTS technology in various applications in watermelon.The genotyping of 76 accessions by Watermelon 5K liquid-phase chip showed an average detection rate of 99.28%and 81.78%for cultivated and wild watermelon accessions,respectively.This provided enough markers information for GWAS and two significant QTLs,ssc1.1 and ssc1.2,associated with soluble sugar content were detected.Furthermore,BSA-seq analysis for non-lobed leaf and dwarf traits were validated by liquid-phase chips,and the candidate region was consistent with our previous studies.Additionally,we precisely introduced the Cldw1 and Clbl genes into an elite inbred line WT2 using Watermelon 5K for assisted selection,resulting in the development of three new germplasm with good plant architecture.As a high-throughput genotyping liquid-phase SNP array,the Watermelon 10K and 5K chips will greatly facilitate functional studies and molecular breeding in watermelon.
基金Supported by Open Project of Key Laboratory of Hubei Province(No.2023KFZZ026).
文摘AIM:To estimate if nanopore targeted sequencing(NTS)could identify pathogens causing postoperative endophthalmitis and further determine the feasibility of clinical application of NTS.METHODS:A total of 55 patients(55 eyes)with postoperative endophthalmitis were retrospectively included in this study with their medical records.Intraocular fluid samples were examined by NTS and microbial culture.All included patients had undergone examinations including measurement of best corrected visual acuity(BCVA)and intraocular pressure(IOP),slit-lamp biomicroscopy,and indirect ophthalmoscopy;additionally,they underwent B-ultrasound,anterior segment photography,and fundus photography if necessary.RESULTS:Among 55 patients with postoperative endophthalmitis,the age was 65.25±15.04y and there were 30 female(54.54%)patients.Forty-one(74.54%)vitreous humor samples and fourteen(25.45%)aqueous humor samples were sent for both NTS and microbial culture.NTS had a notable higher detection rate than microbial culture in detecting pathogens(90.91%vs 38.18%,χ^(2)=33.409,P<0.001).NTS exhibited high sensitivity of pathogen detection in both microbial culture positive and negative samples(100%and 85.29%,respectively).In 16 of 21(76.19%)patients who showed culture-positivity,their results corresponded with those of NTS.Moreover,in two patients(9.52%),NTS showed a better species resolution than microbial culture;in three patients(14.28%),NTS identified additional pathogens.As for fungus,the positive detection rate of NTS was significantly higher than that of microbial culture(20%vs 3.64%,χ^(2)=7.066,P=0.008).Also,NTS could detect multi-infection by bacteria and fungi than microbial culture(32.73%vs 0,χ^(2)=21.522,P<0.001).NTS could detect bacteria as well as fungi simultaneously within 48h in all patients.Meanwhile,NTS had a shorter detection time than microbial culture(1.13±0.34 vs 2.67±0.55d,Z=-9.218,P<0.001).After the NTS results were obtained,15 patients received additional intravitreal/intracameral anti-infection treatment.At follow-up,there was a statistically significant improvement in the visual acuity relative to the baseline(Z=−5.222,P<0.001).CONCLUSION:NTS can provide rapid identification and highly sensitive detection of pathogens among patients with postoperative endophthalmitis,which can guide anti-infection treatment and improve visual prognosis.
基金supported by Open Fund of National Key Laboratory of Deep Space Exploration(NKDSEL2024014)by Civil Aerospace Pre-research Project of State Administration of Science,Technology and Industry for National Defence,PRC(D040103).
文摘Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies.
基金supported by NINDS/NIH(JZ),Coldwell Foundation(JZ) and TTUHSC(JZ)
文摘This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demon- strated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.
基金partially supported by grants from the Ministry of Science and Technology of China(2016YFC1000306)the Beijing Municipal Science and Technology Commission Foundation(Z181100001918003)+1 种基金the Beijing Municipal Commission of Health and Family Planning Foundation(2018-21141,2020-4-1144)Beihang University&Capital Medical University Advanced Innovation Center for Big Data-Based Precision Medicine Plan(BHME-201905)。
文摘Different newborn screening(NBS) programs have been practiced in many countries since the 1960 s. It is of considerable interest whether next-generation sequencing is applicable in NBS. We have developed a panel of 465 causative genes for 596 early-onset, relatively high incidence, and potentially actionable severe inherited diseases in our Newborn Screening with Targeted Sequencing(NESTS) program to screen 11,484 babies in 8 Women and Children’s hospitals nationwide in China retrospectively. The positive rate from preliminary screening of NESTS was 7.85%(902/11,484). With 45.89%(414/902) follow-up of preliminary positive cases, the overall clinically confirmative diagnosis rate of monogenic disorders was 12.07%(50/414), estimating an average of 0.95%(7.85% × 12.07%) clinical diagnosis rate, suggesting that monogenic disorders account for a considerable proportion of birth defects. The disease/gene spectrum varied in different regions of China. NESTS was implemented in a hospital by screening 3923 newborns to evaluate its clinical application. The turn-around time of a primary report, including the sequencing period of < 7 days, was within 11 days by our automatic interpretation pipeline. Our results suggest that NESTS is feasible and cost-effective as a first-tier NBS program, which will change the status of current clinical practice of NBS in China.
基金This work was supported by the National Natural Science Foundation of China(No.81971375 and No.81771576)the National Key Research and Development Program of China(2016YFC0905100)+1 种基金the CAMS Innovation Fund for Medical Sciences(2016-I2M-1-002)the Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences(No.2017PT32020 and No.2018PT32001).
文摘46,XY disorders of sex development(DSD)is characterized by incomplete masculinization genitalia,with gonadal dysplasia and with/without the presence of Mullerian structures.At least 30 genes related to 46,XY DSD have been found.However,the clinical phenotypes of patients with different gene mutations overlap,and accurate diagnosis relies on gene sequencing technology.Therefore,this study aims to determine the prevalence of pathogenic mutations in a Chinese cohort with 46,XY DSD by the targeted nextgeneration sequencing(NGS)technology.Eighty-seven 46,XY DSD patients were enrolled from the Peking Union Medical College Hospital(Beijing,China).A total of fifty-four rare variants were identified in 60 patients with 46,XY DSD.The incidence of these rare variants was approximately 69.0%(60/87).Twenty-five novel variants and 29 reported variants were identified.Based on the American College of Medical Genetics and Genomics(ACMG)guidelines,thirty-three variants were classified as pathogenic or likely pathogenic variants and 21 variants were assessed as variants of uncertain significance.The overall diagnostic rate was about 42.5%based on the pathogenic and likely pathogenic variants.Androgen receptor{AR),steroid 5-alpha-reductase 2(SRD5A2)and nuclear receptor subfamily 5 Group A member 1(NR5A1)gene variants were identified in 21,13 and 13 patients,respectively.The incidence of these three gene variants was about 78.3%(47/60)in patients with rare variants.It is concluded that targeted NGS is an effective method to detect pathogenic mutations in 46,XY DSD patients and AR,SRD5A2,and NR5A1 genes were the most common pathogenic genes in our cohort.
文摘Objective This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing(tNGS)of bronchoalveolar lavage fluid(BALF)in pulmonary mycobacterial infections.Methods This retrospective study was conducted on patients who underwent bronchoscopy and tNGS,smear microscopy,and mycobacterial culture of BALF.Patients with positive Mycobacterium tuberculosis(MTB)culture or GeneXpert results were classified into the tuberculosis case group.Those diagnosed with nontuberculous mycobacteria(NTM)-pulmonary disease(NTM-PD)composed the case group of NTM-PD patients.The control group comprised patients without tuberculosis or NTM-PD.Sensitivity,specificity,and receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance.Results For tuberculosis patients with positive mycobacterial culture results,the areas under the ROC curves(AUCs)for tNGS,GeneXpert,and smear microscopy were 0.975(95%CI:0.935,1.000),0.925(95%CI:0.859,0.991),and 0.675(95%CI:0.563,0.787),respectively.For tuberculosis patients with positive GeneXpert results,the AUCs of tNGS,culture,and smear microscopy were 0.970(95%CI:0.931,1.000),0.850(95%CI:0.770,0.930),and 0.680(95%CI:0.579,0.781),respectively.For NTM-PD,the AUCs of tNGS,culture,and smear-positive but GeneXpert-negative results were 0.987(95%CI:0.967,1.000),0.750(95%CI:0.622,0.878),and 0.615(95%CI:0.479,0.752),respectively.The sensitivity and specificity of tNGS in NTM-PD patients were 100%and 97.5%,respectively.Conclusion tNGS demonstrated superior diagnostic efficacy in mycobacterial infection,indicating its potential for clinical application.
基金Supported by National Natural Science Foundation of China(No.81470642No.81271045)
文摘AIM:To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis(LCA) in Chinese.METHODS:LCA subjects and their families were retrospectively collected from 2013 to 2015.Firstly,whole-exome sequencing was performed in patients who had underwent gene mutation screening with nothing found,and then homozygous sites was selected,candidate sites were annotated,and pathogenic analysis was conducted using softwares including Sorting Tolerant from Intolerant(SIFT),Polyphen-2,Mutation assessor,Condel,and Functional Analysis through Hidden Markov Models(FATHMM).Furthermore,Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of pathogenic genes were performed followed by co-segregation analysis using Fisher exact Test.Sanger sequencing was used to validate single-nucleotide variations(SNVs).Expanded verification was performed in the rest patients.RESULTS:Totally 51 LCA families with 53 patients and24 family members were recruited.A total of 104 SNVs(66 LCA-related genes and 15 co-segregated genes)were submitted for expand verification.The frequencies of homozygous mutation of KRT12 and CYP1A1 were simultaneously observed in 3 families.Enrichment analysis showed that the potential pathogenic genes were mainly enriched in functions related to cell adhesion,biological adhesion,retinoid metabolic process,and eye development biological adhesion.Additionally,WFS7 and STAU2 had the highest homozygous frequencies.CONCLUSION:LCA is a highly heterogeneous disease.Mutations in KRT12,CVP1A1,WFS1,and STAU2 may be involved in the development of LCA.
基金supported by the National Key R&D Program of China(2019YFD1001300 and 2019YFD1001303)the Construction of Molecular Database of Faba Bean and Pea and Identification of Maize Germplasm Project,Ministry of Agriculture and Rural Affairs,China(19200030)+3 种基金the Yunnan Key R&D Program,China(202202AE090003)the earmarked fund for China Agriculture Research System(CARS-08)the Crop Germplasm Resources Protection(2130135)the Major Agricultural Science and Technology Program of Chinese Academy of Agricultural Sciences(CAAS-XTCX20190025)。
文摘Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean lines(Yundou 8137,H0003712,and H000572)as parents and constructed two F2 populations.These two F2 populations,namely 167 F2 plants in Pop1(Yundou 8137×H0003712)and 204 F2 plants in Pop2(H000572×Yundou 8137),were genotyped using a targeted next-generation sequencing(TNGS)genotyping platform,and two high-density single nucleotide polymorphisms(SNP)genetic linkage maps of faba bean were constructed.The map constructed from Pop1 contained 5103 SNPs with a length of 1333.31 cM and an average marker density of 0.26 cM.The map constructed from Pop2 contained 1904 SNPs with a greater length of 1610.61 cM.In these two F2 populations,QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers,pods,plant types and grains.The two maps were then merged into an integrated genetic linkage map containing 6895 SNPs,with a length of 3324.48 cM.These results not only lay the foundation for fine mapping and map-based cloning of related genes,but can also accelerate the molecular marker-assisted breeding of faba bean.
文摘Endophthalmitis is a serious ophthalmic disease characterized by changes in the eye's posterior segment,such as hypopyon and intraocular inflammation,vitritis being a hallmark.Infection-caused endophthalmitis can lead to irreversible vision loss,accompanied by eye pain or eye distention,and in the most severe cases the removal of the eyeball.Microorganisms such as bacteria,fungi,viruses,and parasites typically account for the disease and the entry pathways of the microbial can be divided into either endogenous or exogenous approaches,according to the origin of the etiological agents.Exogenous endophthalmitis can be derived from various occasions(such as postoperative complications or trauma)while endogenous endophthalmitis results from the bloodstream which carries pathogens to the eye.This review aims to summarize the application of new technology in pathogen identification of endophthalmitis so as to prevent the disease and better guide clinical diagnosis and treatment.
基金supported by the National Natural Science Foundation of China(No.82003561).
文摘Objective Thrombotic thrombocytopenic purpura(TTP)is a rare and fatal disease caused by a severe deficiency in the metalloprotease ADAMTS13 and is characterized by thrombotic microangiopathy.The present study aimed to investigate the genes and variants associated with TTP in a Chinese population.Methods Target sequencing was performed on 220 genes related to complements,coagulation factors,platelets,fibrinolytic,endothelial,inflammatory,and anticoagulation systems in 207 TTP patients and 574 controls.Subsequently,logistic regression analysis was carried out to identify the TTP-associated genes based on the counts of rare deleterious variants in the region of a certain gene.Moreover,the associations between common variants and TTP were also investigated.Results ADAMTS13 was the only TTP-associated gene(OR=3.77;95%CI:1.82–7.81;P=3.6×10^(-4))containing rare deleterious variants in TTP patients.Among these 8 variants,5 novel rare variants that might contribute to TTP were identified,including rs200594025,rs782492477,c.T1928G(p.I643S),c.3336_3361del(p.Q1114Afs*20),and c.3469_3470del(p.A1158Sfs*17).No common variants associated with TTP were identified under the stringent criteria of correction for multiple testing.Conclusion ADAMTS13 is the primary gene related to TTP.The genetic variants associated with the occurrence of TTP were slightly different between the Chinese and European populations.
基金Supported by National Natural Science Foundation of China,No.81800721the Postdoctoral Foundation of China,2020M671387.
文摘BACKGROUND Scrub typhus is a naturally occurring acute infectious disease that is primarily transmitted through the bites of chiggers or larval mites infected by Orientia tsutsugamushi(O.tsutsugamushi).Omadacycline,a novel tetracycline,exhibits potent antibacterial efficacy against both typical bacteria and atypical pathogens.However,omadacycline application in the treatment of scrub typhus remains limited.CASE SUMMARY In the present work,we report several cases of scrub typhus,with the main clinical symptoms being fever,the formation of eschars or ulcers,local or systemic lymphadenopathy,headache,myalgia and rash.Blood samples were collected before omadacycline was administered,and O.tsutsugamushi infection was confirmed through targeted next-generation sequencing(tNGS).After two days of treatment,the patients’symptoms,including fever,were alleviated,with no adverse drug reactions.CONCLUSION tNGS is an effective method for diagnosing scrub typhus.Omadacycline can be considered an alternative option for antiinfective therapy in patients with O.tsutsugamushi infections.
基金the National Basic Research Program of China(2010CB720500)the National Natural Science Foundation of China(21176178)
文摘In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming(MINLP) problem,which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network(HEN) and the refrigeration system(RS). The method presented in the paper can dramatically reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to illustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging.
基金supported by grants from the National key research and development plan of China[2016TFC1202700,2016YFC1200903,and 2017YFC1200503]China Mega-Project for Infectious Disease[2017ZX10302301-004,2017ZX100101,and 2017ZX10104001]
文摘Objective Unbiased next generation sequencing(NGS) is susceptible to interference from host or environmental sequences. Consequently, background depletion and virome enrichment techniques are usually needed for clinical samples where viral load is much lower than background sequences. Methods A viral Sequence Independent Targeted Amplification(VSITA) approach using a set of non-ribosomal and virus-enriched octamers(V8) was developed and compared with traditionally used random hexamers(N6). Forty-five archived clinical samples of different types were used in parallel to compare the V8 and N6 enrichment performance of viral sequences and removal performance of ribosomal sequences in the step of reverse transcription followed by quantitative PCR(qP CR). Ten sera samples from patients with fever of unknown origin and 10 feces samples from patients with diarrhea of unknown origin were used in comparison of V8 and N6 enrichment performance following NGS analysis. Results A minimum 30 hexamers matching to viral reference sequences(sense and antisense) were selected from a dataset of random 4,096(4~6) hexamers(N6). Two random nucleotides were added to the 5' end of the selected hexamers, and 480(30 × 4~2) octamers(V8) were obtained. In general, VSITA approach showed higher enrichment of virus-targeted c DNA and enhanced ability to remove unwanted ribosomal sequences in the majorities of 45 predefined clinical samples. Moreover, VSITA combined with NGS enabled to detect not only more viruses but also achieve more viral reads hit and higher viral genome coverage in 20 clinical samples with diarrhea or fever of unknown origin. Conclusion The VSITA approach designed in this study is demonstrated to possess higher sensitivity and broader genome coverage than traditionally used random hexamers in the NGS-based identification of viral pathogens directly from clinical samples.