期刊文献+
共找到5,941篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancement strategies of targetability, response and photostability for in vivo bioimaging 被引量:3
1
作者 Kaizhi Gu Wei-Hong Zhu Xiaojun Peng 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第2期189-198,共10页
Analyses of the physiology and pathology of active biochemical species in their native contexts are critical for early diagnosis and therapy. Optical imaging has emerged as one of the promising modalities for noninvas... Analyses of the physiology and pathology of active biochemical species in their native contexts are critical for early diagnosis and therapy. Optical imaging has emerged as one of the promising modalities for noninvasive and real-time visualization of important biomolecules or biological events, and it has witnessed major advances in the field of imaging in vitro and in vivo. In this review, we present a survey of common approaches and tactics for enhanced targetability, response rate, and photostability in bioimaging applications. Recently developed and representative examples are illustrated on the cellular and tissue levels. 展开更多
关键词 FLUORESCENT PROBE BIOIMAGING targetability RESPONSE rate PHOTOSTABILITY
原文传递
Inherent potential of mitochondria-targeted interventions for chronic neurodegenerative diseases 被引量:2
2
作者 Min Zhou Min Zheng +8 位作者 Siyao Liang Maomao Li Jiarui Ma Shiyu Zhang Xinyao Song Yonglin Hu Yuhong Lyu Xingkun Ou Changwu Yue 《Neural Regeneration Research》 2026年第4期1409-1427,共19页
The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of th... The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis calcium homeostasis oxidative stress Huntington's disease mitochondrial dysfunction MITOCHONDRIA MITOPHAGY neurodegenerative diseases Parkinson's disease targeted therapy
暂未订购
Potential mechanisms of non-coding RNA regulation in Alzheimer's disease 被引量:1
3
作者 Yue Sun Xinping Pang +5 位作者 Xudong Huang Dinglu Liu Jingyue Huang Pengtao Zheng Yanyu Wei Chaoyang Pang 《Neural Regeneration Research》 2026年第1期265-280,共16页
Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathologica... Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathological characteristics and molecular pathways associated with its progression.Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.These non-coding RNAs regulate several biological processes critical to the advancement of the disease,offering promising potential as therapeutic targets and diagnostic biomarkers.Therefore,this review aims to investigate the underlying mechanisms of Alzheimer's disease onset,with a particular focus on microRNAs,long non-coding RNAs,and circular RNAs associated with the disease.The review elucidates the potential pathogenic processes of Alzheimer's disease and provides a detailed description of the synthesis mechanisms of the three aforementioned non-coding RNAs.It comprehensively summarizes the various non-coding RNAs that have been identified to play key regulatory roles in Alzheimer's disease,as well as how these noncoding RNAs influence the disease's progression by regulating gene expression and protein functions.For example,miR-9 targets the UBE4B gene,promoting autophagy-mediated degradation of Tau protein,thereby reducing Tau accumulation and delaying Alzheimer's disease progression.Conversely,the long non-coding RNA BACE1-AS stabilizes BACE1 mRNA,promoting the generation of amyloid-βand accelerating Alzheimer's disease development.Additionally,circular RNAs play significant roles in regulating neuroinflammatory responses.By integrating insights from these regulatory mechanisms,there is potential to discover new therapeutic targets and potential biomarkers for early detection and management of Alzheimer's disease.This review aims to enhance the understanding of the relationship between Alzheimer's disease and non-coding RNAs,potentially paving the way for early detection and novel treatment strategies. 展开更多
关键词 Alzheimer's disease biomarkers circular RNA long non-coding RNA MICRORNA ncRNA regulation NEURODEGENERATION non-coding RNA PATHOGENESIS therapeutic targets
暂未订购
Unraveling the role of ufmylation in the brain
4
作者 Rita J.Serrano Robert J.Bryson-Richardson 《Neural Regeneration Research》 2026年第2期667-668,共2页
Ufmylation is an ubiquitin-like post-translational modification characterized by the covalent binding of mature UFM1 to target proteins.Although the consequences of ufmylation on target proteins are not fully understo... Ufmylation is an ubiquitin-like post-translational modification characterized by the covalent binding of mature UFM1 to target proteins.Although the consequences of ufmylation on target proteins are not fully understood,its importance is evident from the disorders resulting from its dysfunction.Numerous case reports have established a link between biallelic loss-of-function and/or hypomorphic variants in ufmylation-related genes and a spectrum of pediatric neurodevelopmental disorders. 展开更多
关键词 target proteins post translational modification pediatric neurodevelopmental disorders covalent binding mature ufm target proteinsalthough biallelic loss function ufmylation hypomorphic variants neurodevelopmental disorders
暂未订购
Neural functional rehabilitation:Exploring neuromuscular reconstruction technology advancements and challenges
5
作者 Chunxiao Tang Ping Wang +3 位作者 Zhonghua Li Shizhen Zhong Lin Yang Guanglin Li 《Neural Regeneration Research》 2026年第1期173-186,共14页
Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic i... Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic injuries,and neurological diseases.Neural machine interface technology establishes direct connections with the brain or peripheral nervous system to restore impaired motor,sensory,and cognitive functions,significantly improving patients'quality of life.This review analyzes the chronological development and integration of various neural machine interface technologies,including regenerative peripheral nerve interfaces,targeted muscle and sensory reinnervation,agonist–antagonist myoneural interfaces,and brain–machine interfaces.Recent advancements in flexible electronics and bioengineering have led to the development of more biocompatible and highresolution electrodes,which enhance the performance and longevity of neural machine interface technology.However,significant challenges remain,such as signal interference,fibrous tissue encapsulation,and the need for precise anatomical localization and reconstruction.The integration of advanced signal processing algorithms,particularly those utilizing artificial intelligence and machine learning,has the potential to improve the accuracy and reliability of neural signal interpretation,which will make neural machine interface technologies more intuitive and effective.These technologies have broad,impactful clinical applications,ranging from motor restoration and sensory feedback in prosthetics to neurological disorder treatment and neurorehabilitation.This review suggests that multidisciplinary collaboration will play a critical role in advancing neural machine interface technologies by combining insights from biomedical engineering,clinical surgery,and neuroengineering to develop more sophisticated and reliable interfaces.By addressing existing limitations and exploring new technological frontiers,neural machine interface technologies have the potential to revolutionize neuroprosthetics and neurorehabilitation,promising enhanced mobility,independence,and quality of life for individuals with neurological impairments.By leveraging detailed anatomical knowledge and integrating cutting-edge neuroengineering principles,researchers and clinicians can push the boundaries of what is possible and create increasingly sophisticated and long-lasting prosthetic devices that provide sustained benefits for users. 展开更多
关键词 agonist–antagonist myoneural interface biocompatibility brain–machine interface clinical anatomy neural machine interface NEUROPROSTHETICS peripheral nerve interface PROPRIOCEPTION targeted muscle reinnervation targeted sensory reinnervation
在线阅读 下载PDF
Pericyte-glial cell interactions: Insights into brain health and disease
6
作者 Ali Sepehrinezhad Ali Gorji 《Neural Regeneration Research》 2026年第4期1253-1263,共11页
Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, ... Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, maturation, and maintenance of the central nervous system. An expanding body of studies has revealed that pericytes establish carefully regulated interactions with oligodendrocytes, microglia, and astrocytes. These communications govern numerous critical brain processes, including angiogenesis, neurovascular unit homeostasis, blood–brain barrier integrity, cerebral blood flow regulation, and immune response initiation. Glial cells and pericytes participate in dynamic and reciprocal interactions, with each influencing and adjusting the functionality of the other. Pericytes have the ability to control astrocyte polarization, trigger differentiation of oligodendrocyte precursor cells, and initiate immunological responses in microglia. Various neurological disorders that compromise the integrity of the blood–brain barrier can disrupt these communications, impair waste clearance, and hinder cerebral blood circulation, contributing to neuroinflammation. In the context of neurodegeneration, these disruptions exacerbate pathological processes, such as neuronal damage, synaptic dysfunction, and impaired tissue repair. This article explores the complex interactions between pericytes and various glial cells in both healthy and pathological states of the central nervous system. It highlights their essential roles in neurovascular function and disease progression, providing important insights that may enhance our understanding of the molecular mechanisms underlying these interactions and guide potential therapeutic strategies for neurodegenerative disorders in future research. 展开更多
关键词 BRAIN INFLAMMATION NEUROPROTECTION neurovascular function therapeutic targets
暂未订购
Exosomes in neurodegenerative diseases:Therapeutic potential and modification methods
7
作者 Hongli Chen Na Li +7 位作者 Yuanhao Cai Chunyan Ma Yutong Ye Xinyu Shi Jun Guo Zhibo Han Yi Liu Xunbin Wei 《Neural Regeneration Research》 2026年第2期478-490,共13页
In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,... In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,allowing them to target deep brain lesions.Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines,mRNAs,and disease-related proteins,thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects.However,exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells.This limitation can lead to side effects and toxicity when they interact with non-specific cells.Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases.In this review,we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases.Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases.We introduce the strategies being used to enhance exosome targeting,including genetic engineering,chemical modifications(both covalent,such as click chemistry and metabolic engineering,and non-covalent,such as polyvalent electrostatic and hydrophobic interactions,ligand-receptor binding,aptamer-based modifications,and the incorporation of CP05-anchored peptides),and nanomaterial modifications.Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases.However,several challenges remain in the clinical application of exosomes.Improvements are needed in preparation,characterization,and optimization methods,as well as in reducing the adverse reactions associated with their use.Additionally,the range of applications and the safety of exosomes require further research and evaluation. 展开更多
关键词 Alzheimer’s disease cell recognition central nervous system diseases enhanced targeting exosome modification exosome targeting neurodegenerative disease Parkinson’s disease stem cell exosomes stem cell therapy
暂未订购
Novel insights into non-coding RNAs and their role in hydrocephalus
8
作者 Zhiyue Cui Jian He +8 位作者 An Li Junqiang Wang Yijian Yang Kaiyue Wang Zhikun Liu Qian Ouyang Zhangjie Su Pingsheng Hu Gelei Xiao 《Neural Regeneration Research》 2026年第2期636-647,共12页
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiolog... A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus,one of the most common neurological conditions worldwide.In this review,we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition.Then,we outline the definition,classification,and biological role of non-coding RNAs.Subsequently,we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail.Specifically,we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus,including glymphatic pathways,neuroinflammatory processes,and neurological dysplasia,on the basis of the existing evidence.Lastly,we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments. 展开更多
关键词 HYDROCEPHALUS NEURODEVELOPMENT NEUROINFLAMMATION non-coding RNA therapeutic target
暂未订购
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
9
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
Towards mechanism-based tau-targeted therapies
10
作者 Lidia Bakota Roland Brandt 《Neural Regeneration Research》 2026年第2期687-688,共2页
Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,ta... Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies. 展开更多
关键词 tau targeted therapies cellular components mechanism based therapies cellular componentswhich cellular models MICROTUBULES TAUOPATHIES neurodegenerative diseasescollectively
暂未订购
Gene,genetics and genetic medicines in gastroenterology:Current status and its future
11
作者 Ashok Kumar Yajnadatta Sarangi Payal Kaw 《World Journal of Gastroenterology》 2026年第1期37-68,共32页
The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are imm... The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are immunological,and others associated as idiopathic,are undiagnosed by all possible means.Some of the rare diseases are congenital in nature,passing from the parent to the child.Many of the undiagnosed diseases are now being diagnosed as genetic and the genes have been implicated as a causative agent.There is a search for newer treatments for such diseases,which is called genomic medicine.Genomic medicine is an emerging medical discipline that involves the use of genomic information about an individual.This is used both for diagnostic as well as therapeutic decisions to improve the current health domain and pave the way for policymakers for its clinical use.In the developing era of precision medicine,genomics,epigenomics,environmental exposure,and other data would be used to more accurately guide individual diagnosis and treatment.Genomic medicine is already making an impact in the fields of oncology,pharmacology,rare,infectious and many undiagnosed diseases.It is beginning to fuel new approaches in certain medical specialties.Oncology is at the leading edge of incorporating genomics,as diagnostics for genetic and genomic markers are increasingly included in cancer screening,and to guide tailored treatment strategies.Genetics and genetic medicine have been reported to play a role in gastroenterology in several ways,including genetic testing(hereditary pancreatitis and hereditary gastrointestinal cancer syndromes).Genetic testing can also help subtype diseases,such as classifying pancreatitis as idiopathic or hereditary.Gene therapy is a promising approach for treating gastrointestinal diseases that are not effectively treated by conventional pharmaceuticals and surgeries.Gene therapy strategies include gene addition,gene editing,messenger RNA therapy,and gene silencing.Understanding genetic determinants,advances in genetics,have led to a better understanding of the genetic factors that contribute to human disease.Family-member risk stratification and genetic diagnosis can help identify family members who are at risk,which can lead to preventive treatments,lifestyle recommendations,and routine follow ups.Selecting target genes helps identify the gene targets associated with each gastrointestinal disease.Common gastrointestinal diseases associated with genetic abnormalities include-inflammatory bowel disease,gastroesophageal reflux disease,non-alcoholic fatty liver disease,and irritable bowel syndrome.With advancing tools and technology,research in the search of newer and individualized treatment,genes and genetic medicines are expected to play a significant role in human health and gastroenterology. 展开更多
关键词 Genes GENETICS Clinical genetic testing Germline mutation Somatic mutation Targeted therapy PHARMACOGENETICS Genetic medicine GASTROENTEROLOGY Gastrointestinal diseases
暂未订购
An Improved High-Degree Cubature Particle Filter and its Application in Bearing-only Tracking
12
作者 Yanqi Niu Dandan Zhu Yaan Li 《哈尔滨工程大学学报(英文版)》 2026年第1期300-311,共12页
In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the... In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the recommended density function by introducing a fifth-degree cubature Kalman filter algorithm to guide particle sampling,which effectively alleviates the problem of particle degradation and significantly improves the estimation accuracy of the filter.However,the 5CPF algorithm exhibits high computational complexity,particularly in scenarios with a large number of particles.Therefore,we propose the extended Kalman filter(EKF)-5CPF algorithm,which employs an EKF to replace the time update step for each particle in the 5CPF.This enhances the algorithm’s real-time capability while maintaining the high precision advantage of the 5CPF algorithm.In addition,we construct bearing-only dual-station and single-motion station target tracking systems,and the filtering performances of 5CPF and EKF-5CPF algorithms under different conditions are analyzed.The results show that both the 5CPF algorithm and EKF-5CPF have strong robustness and can adapt to different noise environments.Furthermore,both algorithms significantly outperform traditional nonlinear filtering algorithms in terms of convergence speed,tracking accuracy,and overall stability. 展开更多
关键词 Nonlinear filtering Fifth-degree cubature particle filter EKF-5CPF Bearings-only target motion analysis
在线阅读 下载PDF
Time Delay Estimation of Target Echo Signal Based on Multi-bright Spot Echoes
13
作者 Ge Yu Fan Du +1 位作者 Xiukun Li Yan Li 《哈尔滨工程大学学报(英文版)》 2026年第1期312-325,共14页
Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in... Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments. 展开更多
关键词 Multi-bright spot echoes Time-delay estimation Target echo signal Frequency sliced wavelet transform Fractional order fourier transform
在线阅读 下载PDF
The pathway to discovering antiviral drugs from marine resources
14
作者 Wei Wang 《Infectious Diseases Research》 2026年第1期1-3,共3页
Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as ... Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as a primary source for developing novel antiviral drugs,making the rapid discovery and evaluation of marine antiviral agents particularly crucial.Thus,future research should place greater emphasis on the identification of novel antiviral targets through the combination of artificial intelligence(AI)and structural pharmacology,as well as expanding the marine resource and target databases. 展开更多
关键词 identification novel antiviral targets discovery evaluation antiviral drugs artificial intelligence ai drug resistance developing novel antiviral drugsmaking marine resources marine antiviral agents
暂未订购
Recombinant tissue plasminogen activator protects neurons after intracerebral hemorrhage through activating the PI3K/AKT/mTOR pathway
15
作者 Jie Jing Shiling Chen +7 位作者 Xuan Wu Jingfei Yang Xia Liu Jiahui Wang Jingyi Wang Yunjie Li Ping Zhang Zhouping Tang 《Neural Regeneration Research》 2026年第4期1574-1585,共12页
Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminog... Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminogen activator may come into contact with brain tissue.Therefore,a thorough assessment of its safety is required.In this study,we established a mouse model of intracerebral hemorrhage induced by type VII collagenase.We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage,reduced pathological damage,and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma.In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin,the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis,autophagy,and endoplasmic reticulum stress.Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons.Moreover,the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis,autophagy,and endoplasmic reticulum stress.Furthermore,to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects,various inhibitors were used to target distinct domains.It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonineprotein kinase/mammalian target of rapamycin pathway.These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage,possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway. 展开更多
关键词 apoptosis autophagy endoplasmic reticulum stress epidermal growth factor intracerebral hemorrhage mammalian target of rapamycin minimally invasive surgery phosphoinositide 3-kinase RAC-alpha serine/threonine-protein kinase recombinant tissue plasminogen activator
暂未订购
Transferrin-guided intelligent nanovesicles augment the targetability and potency of clinical PLK1 inhibitor to acute myeloid leukemia 被引量:1
16
作者 Yifeng Xia Jingnan An +8 位作者 Jiaying Li Wenxing Gu Yifan Zhang Songsong Zhao Cenzhu Zhao Yang Xu Bin Li Zhiyuan Zhong Fenghua Meng 《Bioactive Materials》 SCIE CSCD 2023年第3期499-510,共12页
Acute myeloid leukemia(AML)remains a most lethal hematological malignancy,partly because of its slow development of targeted therapies compared with other cancers.PLK1 inhibitor,volasertib(Vol),is among the few molecu... Acute myeloid leukemia(AML)remains a most lethal hematological malignancy,partly because of its slow development of targeted therapies compared with other cancers.PLK1 inhibitor,volasertib(Vol),is among the few molecular targeted drugs granted breakthrough therapy status for AML;however,its fast clearance and dose-limiting toxicity greatly restrain its clinical benefits.Here,we report that transferrin-guided polymersomes(TPs)markedly augment the targetability,potency and safety of Vol to AML.Vol-loaded TPs(TPVol)with 4%trans-ferrin exhibited best cellular uptake,effective down-regulation of p-PLK1,p-PTEN and p-AKT and superior apoptotic activity to free Vol in MV-4-11 leukemic cells.Intravenous injection of TPVol gave 6-fold higher AUC than free Vol and notable accumulation in AML-residing bone marrow.The efficacy studies in orthotopic MV-4-11 leukemic model demonstrated that TPVol significantly reduced leukemic cell proportions in periphery blood,bone marrow,liver and spleen,effectively enhanced mouse survival rate,and impeded bone loss.This transferrin-guided nano-delivery of molecular targeted drugs appears to be an interesting strategy towards the development of novel treatments for AML. 展开更多
关键词 Targeted delivery Acute myeloid leukemia Polo-like kinase 1 Molecular targeted drug
原文传递
Hydroxy-α-sanshool-loaded adipose-targeted mesoporous silica nanoparticles induce white adipose browning and reduce obesity by activating TRPV1 被引量:1
17
作者 Qing Zhang Chengxun He +5 位作者 Juan Guo Dandan Tang Die Qian Chuan Zheng Chunjie Wu Wei Peng 《Bio-Design and Manufacturing》 2025年第2期288-309,I0005-I0011,共29页
Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxy... Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects. 展开更多
关键词 Hydroxy-α-sanshool Adipocyte targetability Mesoporous silica nanoparticles White adipose tissue browning OBESITY
在线阅读 下载PDF
Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage 被引量:4
18
作者 Ruoyu Huang Qiuyu Pang +4 位作者 Lexin Zheng Jiaxi Lin Hanxi Li Lingbo Wan Tao Wang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1015-1030,共16页
Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol ... Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol plays a key role in the establishment and maintenance of the central nervous system.The brain contains 20%of the whole body’s cholesterol,80%of which is located within myelin.A huge number of processes(e.g.,the sterol regulatory element-binding protein pathway and liver X receptor pathway)participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis,intracellular transport,and efflux.Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences.Therefore,we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases.Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype,with high mortality and morbidity.Historical cholesterol levels are associated with the risk of intracerebral hemorrhage.Moreover,secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation,such as neuroinflammation,demyelination,and multiple types of programmed cell death.Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage.In this paper,we review normal cholesterol metabolism in the central nervous system,the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage,and the links between cholesterol metabolism and cell death.We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage. 展开更多
关键词 cell death cholesterol metabolism intracerebral hemorrhage MYELINATION therapeutic target
暂未订购
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets 被引量:4
19
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
暂未订购
Glycolytic dysregulation in Alzheimer's disease:unveiling new avenues for understanding pathogenesis and improving therapy 被引量:2
20
作者 You Wu Lijie Yang +2 位作者 Wanrong Jiang Xinyuan Zhang Zhaohui Yao 《Neural Regeneration Research》 SCIE CAS 2025年第8期2264-2278,共15页
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli... Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease glial cells GLYCOLYSIS neuronal metabolism PATHOGENESIS therapeutic targets
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部