Based on a thorough theory of the Artin transfer homomorphism from a group G to the abelianization of a subgroup of finite index , and its connection with the permutation representation and the monomial representation...Based on a thorough theory of the Artin transfer homomorphism from a group G to the abelianization of a subgroup of finite index , and its connection with the permutation representation and the monomial representation of G, the Artin pattern , which consists of families , resp. , of transfer targets, resp. transfer kernels, is defined for the vertices of any descendant tree T of finite p-groups. It is endowed with partial order relations and , which are compatible with the parent-descendant relation of the edges of the tree T. The partial order enables termination criteria for the p-group generation algorithm which can be used for searching and identifying a finite p-group G, whose Artin pattern is known completely or at least partially, by constructing the descendant tree with the abelianization of G as its root. An appendix summarizes details concerning induced homomorphisms between quotient groups, which play a crucial role in establishing the natural partial order on Artin patterns and explaining the stabilization, resp. polarization, of their components in descendant trees T of finite p-groups.展开更多
Urban grid power forecasting is one of the important tasks of power system operators, which helps to analyze the development trend of the city. As the demand for electricity in various industries is affected by many f...Urban grid power forecasting is one of the important tasks of power system operators, which helps to analyze the development trend of the city. As the demand for electricity in various industries is affected by many factors, the data of relevant influencing factors are scarce, resulting in great deviations in the accuracy of prediction results. In order to improve the prediction results, this paper proposes a model based on Multi-Target Tree Regression to predict the monthly electricity consumption of different industrial structures. Due to few data characteristics of actual electricity consumption in Shanghai from 2013 to the first half of 2017. Thus, we collect data on GDP growth, weather conditions, and tourism season distribution in various industries in Shanghai, model and train the electricity consumption data of different industries in different months. The multi-target tree regression model was tested with actual values to verify the reliability of the model and predict the monthly electricity consumption of each industry in the second half of 2017. The experimental results show that the model can accurately predict the monthly electricity consumption of various industries.展开更多
针对基本的快速搜索随机树(rapidly-exploring random tree,RRT)算法用于路径规划时存在的树扩展无导向性、密集障碍物区域规划效率低、局部区域节点聚集等问题,提出一种新的RRT改进算法。该算法采用增强的目标偏向策略,并引入可变的权...针对基本的快速搜索随机树(rapidly-exploring random tree,RRT)算法用于路径规划时存在的树扩展无导向性、密集障碍物区域规划效率低、局部区域节点聚集等问题,提出一种新的RRT改进算法。该算法采用增强的目标偏向策略,并引入可变的权值系数,提高随机树扩展的导向性和灵活性;同时采用局部节点过滤机制,过滤局部区域内聚集的节点;最后,使用节点直连策略对初始路径进行优化处理。仿真实验的结果表明,改进的RRT算法规划路径的速度更快且生成的路径质量更高,充分证明了改进算法的有效可行性。展开更多
针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自...针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自适应模型;其次,在首次规划好路线后,路径中仍存在一些不必要的拐点与棱角,针对传统路径裁剪依赖局部搜索策略,可能导致次优解生成,提出PRM-Dijkstra(probabilistic roadmap-dijkstra)算法对路径进行裁剪,将改进RRT算法生成的树节点利用PRM算法相互连接起来,通过Dijkstra算法计算出一条最优路径;最后,改进RRT算法与PRM-Dijkstra种算法优势相结合,在保证有一条路径的前提下,最大概率的寻找最优路径。通过复杂图下仿真避障实验,结果显示:改进RRT算法在节点生成数量与规划用时相较传统RRT算法平均减少80%,相较于Goal-bias RRT算法均减少40%。并通过机器人操作系统(robot operating system,ROS)下的MoveIt!集成开发平台进行现实环境下避障实验,验证了算法的可行性与有效性。展开更多
文摘Based on a thorough theory of the Artin transfer homomorphism from a group G to the abelianization of a subgroup of finite index , and its connection with the permutation representation and the monomial representation of G, the Artin pattern , which consists of families , resp. , of transfer targets, resp. transfer kernels, is defined for the vertices of any descendant tree T of finite p-groups. It is endowed with partial order relations and , which are compatible with the parent-descendant relation of the edges of the tree T. The partial order enables termination criteria for the p-group generation algorithm which can be used for searching and identifying a finite p-group G, whose Artin pattern is known completely or at least partially, by constructing the descendant tree with the abelianization of G as its root. An appendix summarizes details concerning induced homomorphisms between quotient groups, which play a crucial role in establishing the natural partial order on Artin patterns and explaining the stabilization, resp. polarization, of their components in descendant trees T of finite p-groups.
文摘Urban grid power forecasting is one of the important tasks of power system operators, which helps to analyze the development trend of the city. As the demand for electricity in various industries is affected by many factors, the data of relevant influencing factors are scarce, resulting in great deviations in the accuracy of prediction results. In order to improve the prediction results, this paper proposes a model based on Multi-Target Tree Regression to predict the monthly electricity consumption of different industrial structures. Due to few data characteristics of actual electricity consumption in Shanghai from 2013 to the first half of 2017. Thus, we collect data on GDP growth, weather conditions, and tourism season distribution in various industries in Shanghai, model and train the electricity consumption data of different industries in different months. The multi-target tree regression model was tested with actual values to verify the reliability of the model and predict the monthly electricity consumption of each industry in the second half of 2017. The experimental results show that the model can accurately predict the monthly electricity consumption of various industries.
文摘针对基本的快速搜索随机树(rapidly-exploring random tree,RRT)算法用于路径规划时存在的树扩展无导向性、密集障碍物区域规划效率低、局部区域节点聚集等问题,提出一种新的RRT改进算法。该算法采用增强的目标偏向策略,并引入可变的权值系数,提高随机树扩展的导向性和灵活性;同时采用局部节点过滤机制,过滤局部区域内聚集的节点;最后,使用节点直连策略对初始路径进行优化处理。仿真实验的结果表明,改进的RRT算法规划路径的速度更快且生成的路径质量更高,充分证明了改进算法的有效可行性。