There is an urgent need for new chemical application techniques and sprayers in Chinese orchard spraying.A new tractor-mounted automatic target detecting electrostatics,and air-assisted orchard sprayer was designed an...There is an urgent need for new chemical application techniques and sprayers in Chinese orchard spraying.A new tractor-mounted automatic target detecting electrostatics,and air-assisted orchard sprayer was designed and developed to meet the demand of chemical pest control in orchards.This sprayer light weighted,highly efficient,reduces pesticide use and is friendly to the environment.The techniques of automatic target detecting,electrostatics,and air-assisted spraying were combined in this system.The electrostatically charged droplets are projected toward the target by the assistance of an air stream that increases the droplets penetration within canopy.Experimental results show that the new automatic target detecting orchard sprayer with an infrared sensor can save more than 50%to 75%of pesticides,improve the utilization rate(over 55%),control efficiency,and significantly reduce environmental pollution caused by the pesticide application.At the same time the key technological problems related to air-assisted low volume and electrostatic spraying were solved.展开更多
Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection syste...Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.展开更多
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp...The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges ...Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.展开更多
Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models...Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios.展开更多
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ...Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
This study combines ground penetrating radar(GPR)and convolutional neural networks for the intelligent detection of underground road targets.The target location was realized using a gradient-class activation map(Grad-...This study combines ground penetrating radar(GPR)and convolutional neural networks for the intelligent detection of underground road targets.The target location was realized using a gradient-class activation map(Grad-CAM).First,GPR technology was used to detect roads and obtain radar images.This study constructs a radar image dataset containing 3000 underground road radar targets,such as underground pipelines and holes.Based on the dataset,a ResNet50 network was used to classify and train different underground targets.During training,the accuracy of the training set gradually increases and finally fluctuates approximately 85%.The loss function gradually decreases and falls between 0.2 and 0.3.Finally,targets were located using Grad-CAM.The positioning results of single and multiple targets are consistent with the actual position,indicating that the method can eff ectively realize the intelligent detection of underground targets in GPR.展开更多
In this paper,a reasoning enhancement method based on RGCN(Relational Graph Convolutional Network)is proposed to improve the detection capability of UAV(Unmanned Aerial Vehicle)on fast-moving military targets in urban...In this paper,a reasoning enhancement method based on RGCN(Relational Graph Convolutional Network)is proposed to improve the detection capability of UAV(Unmanned Aerial Vehicle)on fast-moving military targets in urban battlefield environments.By combining military images with the publicly available VisDrone2019 dataset,a new dataset called VisMilitary was built and multiple YOLO(You Only Look Once)models were tested on it.Due to the low confidence problem caused by fuzzy targets,the performance of traditional YOLO models on real battlefield images decreases significantly.Therefore,we propose an improved RGCN inference model,which improves the performance of the model in complex environments by optimizing the data processing and graph network architecture.Experimental results show that the proposed method achieves an improvement of 0.4%to 1.7%on mAP@0.50,which proves the effectiveness of the model in military target detection.The research of this paper provides a new technical path for UAV target detection in urban battlefield,and provides important enlightenment for the application of deep learning in military field.展开更多
Infrared small-target detection has important applications in many fields due to its high penetration capability and detection distance.This study introduces a detector called“YOLO-SDLUWD”which is based on the YOLOv...Infrared small-target detection has important applications in many fields due to its high penetration capability and detection distance.This study introduces a detector called“YOLO-SDLUWD”which is based on the YOLOv7 network,for small target detection in complex infrared backgrounds.The“SDLUWD”refers to the combination of the Spatial Depth layer followed Convolutional layer structure(SD-Conv)and a Linear Up-sampling fusion Path Aggregation Feature Pyramid Network(LU-PAFPN)and a training strategy based on the normalized Gaussian Wasserstein Distance loss(WD-loss)function.“YOLO-SDLUWD”aims to reduce detection accuracy when the maximum pooling downsampling layer in the backbone network loses important feature information,support the interaction and fusion of high-dimensional and low-dimensional feature information,and overcome the false alarm predictions induced by noise in small target images.The detector achieved a mAP@0.5 of 90.4%and mAP@0.5:0.95 of 48.5%on IRIS-AG,an increase of 9%-11%over YOLOv7-tiny,outperforming other state-of-the-art target detectors in terms of accuracy and speed.展开更多
To address low detection accuracy in near-coastal vessel target detection under complex conditions,a novel near-coastal vessel detection model based on an improved YOLOv7 architecture is proposed in this paper.The att...To address low detection accuracy in near-coastal vessel target detection under complex conditions,a novel near-coastal vessel detection model based on an improved YOLOv7 architecture is proposed in this paper.The attention mechanism Coordinate Attention is used to improve channel attention weight and enhance a network’s ability to extract small target features.In the enhanced feature extraction network,the lightweight convolution algorithm Grouped Spatial Convolution is used to replace MPConv to reduce model calculation costs.EIoU Loss is used to replace the regression frame loss function in YOLOv7 to reduce the probability of missed and false detection.The performance of the improved model was verified using an enhanced dataset obtained through rainy and foggy weather simulation.Experiments were conducted on the datasets before and after the enhancement.The improved model achieved a mean average precision(mAP)of 97.45%on the original dataset,and the number of parameters was reduced by 2%.On the enhanced dataset,the mAP of the improved model reached 88.08%.Compared with seven target detection models,such as Faster R-CNN,YOLOv3,YOLOv4,YOLOv5,YOLOv7,YOLOv8-n,and YOLOv8-s,the improved model can effectively reduce the missed and false detection rates and improve target detection accuracy.The improved model not only accurately detects vessels in complex weather environments but also outperforms other methods on original and enhanced SeaShip datasets.This finding shows that the improved model can achieve near-coastal vessel target detection in multiple environments,laying the foundation for vessel path planning and automatic obstacle avoidance.展开更多
Infrared images typically exhibit diverse backgrounds,each potentially containing noise and target-like interference elements.In complex backgrounds,infrared small targets are prone to be submerged by background noise...Infrared images typically exhibit diverse backgrounds,each potentially containing noise and target-like interference elements.In complex backgrounds,infrared small targets are prone to be submerged by background noise due to their low pixel proportion and limited available features,leading to detection failure.To address this problem,this paper proposes an Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network(ASCFNet)tailored for the detection of infrared weak and small targets.The network architecture first designs a Multidimensional Lightweight Pixel-level Attention Module(MLPA),which alleviates the issue of small-target feature suppression during deep network propagation by combining channel reshaping,multi-scale parallel subnet architectures,and local cross-channel interactions.Then,a Multidimensional Shift-Invariant Recall Module(MSIR)is designed to ensure the network remains unaffected by minor input perturbations when processing infrared images,through focusing on the model’s shift invariance.Subsequently,a Cross-Evolutionary Feature Fusion structure(CEFF)is designed to allow flexible and efficient integration of multidimensional feature information from different network hierarchies,thereby achieving complementarity and enhancement among features.Experimental results on three public datasets,SIRST,NUDT-SIRST,and IRST640,demonstrate that our proposed network outperforms advanced algorithms in the field.Specifically,on the NUDT-SIRST dataset,the mAP50,mAP50-95,and metrics reached 99.26%,85.22%,and 99.31%,respectively.Visual evaluations of detection results in diverse scenarios indicate that our algorithm exhibits an increased detection rate and reduced false alarm rate.Our method balances accuracy and real-time performance,and achieves efficient and stable detection of infrared weak and small targets.展开更多
To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-f...To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-feature local difference.Firstly,an improved high-boost filter is used for preprocessing to eliminate background clutter and high-brightness interference,thereby increasing the probability of capturing real targets in the density peak search.Secondly,a triple-layer window is used to extract features from the area surrounding candidate targets,addressing the uncertainty of small target sizes.By calculating multi-feature local differences between the triple-layer windows,the problems of blurred target edges and low contrast are resolved.To balance the contribution of different features,intra-class distance is used to calculate weights,achieving weighted fusion of multi-feature local differences to obtain the weighted multi-feature local differences of candidate targets.The real targets are then extracted using the interquartile range.Experiments on datasets such as SIRST and IRSTD-IK show that the proposed method is suitable for various complex types and demonstrates good robustness and detection performance.展开更多
In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address t...In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address these challenges,this paper proposes an improved detection algorithm based on YOLOv11n.First,a Dynamic Multi-Scale Feature Fusion and Adaptive Weighting approach is employed to design an Adaptive Focused Diffusion Pyramid Network(AFDPN),which enhances the feature expression and transmission capability of shallow small targets,thereby reducing the loss of detailed information.Then,combined with an Edge Enhancement(EE)module,the model improves the extraction of infrared small target edge features through low-frequency suppression and high-frequency enhancement strategies.Experimental results on the publicly available HIT-UAV dataset show that the improved model achieves a 3.8%increase in average detection accuracy and a 3.0%improvement in recall rate compared to YOLOv11n,with a computational cost of only 9.1 GFLOPS.In comparison experiments,the detection accuracy and model size balance achieved the optimal solution,meeting the lightweight deployment requirements for drone-based systems.This method provides a high-precision,lightweight solution for small target detection in drone-based infrared imagery.展开更多
Underwater target detection in forward-looking sonar(FLS)images is a challenging but promising endeavor.The existing neural-based methods yield notable progress but there remains room for improvement due to overlookin...Underwater target detection in forward-looking sonar(FLS)images is a challenging but promising endeavor.The existing neural-based methods yield notable progress but there remains room for improvement due to overlooking the unique characteristics of underwater environments.Considering the problems of low imaging resolution,complex background environment,and large changes in target imaging of underwater sonar images,this paper specifically designs a sonar images target detection Network based on Progressive sensitivity capture,named ProNet.It progressively captures the sensitive regions in the current image where potential effective targets may exist.Guided by this basic idea,the primary technical innovation of this paper is the introduction of a foundational module structure for constructing a sonar target detection backbone network.This structure employs a multi-subspace mixed convolution module that initially maps sonar images into different subspaces and extracts local contextual features using varying convolutional receptive fields within these heterogeneous subspaces.Subsequently,a Scale-aware aggregation module effectively aggregates the heterogeneous features extracted from different subspaces.Finally,the multi-scale attention structure further enhances the relational perception of the aggregated features.We evaluated ProNet on three FLS datasets of varying scenes,and experimental results indicate that ProNet outperforms the current state-of-the-art sonar image and general target detectors.展开更多
When a fire breaks out in a high-rise building,the occlusion of smoke and obstacles results in dearth of crucial information concerning people in distress,thereby creating a challenge in their detection.Given the rest...When a fire breaks out in a high-rise building,the occlusion of smoke and obstacles results in dearth of crucial information concerning people in distress,thereby creating a challenge in their detection.Given the restricted sensing range of a single unmanned aerial vehicle(UAV)cam-era,enhancing the target recognition rate becomes challenging without target information.To tackle this issue,this paper proposes a multi-agent autonomous collaborative detection method for multi-targets in complex fire environments.The objective is to achieve the fusion of multi-angle visual information,effectively increasing the target’s information dimension,and ultimately address-ing the problem of low target recognition rate caused by the lack of target information.The method steps are as follows:first,the you only look once version5(YOLOv5)is used to detect the target in the image;second,the detected targets are tracked to monitor their movements and trajectories;third,the person re-identification(ReID)model is employed to extract the appearance features of targets;finally,by fusing the visual information from multi-angle cameras,the method achieves multi-agent autonomous collaborative detection.The experimental results show that the method effectively combines the visual information from multi-angle cameras,resulting in improved detec-tion efficiency for people in distress.展开更多
Underwater imaging is frequently influenced by factors such as illumination,scattering,and refraction,which can result in low image contrast and blurriness.Moreover,the presence of numerous small,overlapping targets r...Underwater imaging is frequently influenced by factors such as illumination,scattering,and refraction,which can result in low image contrast and blurriness.Moreover,the presence of numerous small,overlapping targets reduces detection accuracy.To address these challenges,first,green channel images are preprocessed to rectify color bias while improving contrast and clarity.Se-cond,the YOLO-DBS network that employs deformable convolution is proposed to enhance feature learning from underwater blurry images.The ECA attention mechanism is also introduced to strengthen feature focus.Moreover,a bidirectional feature pyramid net-work is utilized for efficient multilayer feature fusion while removing nodes that contribute minimally to detection performance.In addition,the SIoU loss function that considers factors such as angular error and distance deviation is incorporated into the network.Validation on the RUOD dataset demonstrates that YOLO-DBS achieves approximately 3.1%improvement in mAP@0.5 compared with YOLOv8n and surpasses YOLOv9-tiny by 1.3%.YOLO-DBS reduces parameter count by 32%relative to YOLOv8n,thereby demonstrating superior performance in real-time detection on underwater observation platforms.展开更多
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ...In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.展开更多
文摘There is an urgent need for new chemical application techniques and sprayers in Chinese orchard spraying.A new tractor-mounted automatic target detecting electrostatics,and air-assisted orchard sprayer was designed and developed to meet the demand of chemical pest control in orchards.This sprayer light weighted,highly efficient,reduces pesticide use and is friendly to the environment.The techniques of automatic target detecting,electrostatics,and air-assisted spraying were combined in this system.The electrostatically charged droplets are projected toward the target by the assistance of an air stream that increases the droplets penetration within canopy.Experimental results show that the new automatic target detecting orchard sprayer with an infrared sensor can save more than 50%to 75%of pesticides,improve the utilization rate(over 55%),control efficiency,and significantly reduce environmental pollution caused by the pesticide application.At the same time the key technological problems related to air-assisted low volume and electrostatic spraying were solved.
基金Supported by the National“863”Project of China(2010AA10A301)National Technology Support Project for the 12th Five-year Plan(2011BAD20B07)
文摘Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.
文摘The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
文摘Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.
文摘Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios.
基金supported in part by the National Natural Science Foundation of China Grants 62402085,61972062,62306060the Liaoning Doctoral Research Start-Up Fund 2023-BS-078+1 种基金the Dalian Youth Science and Technology Star Project 2023RQ023the Liaoning Basic Research Project 2023JH2/101300191.
文摘Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金supported in part by the National Natural Science Fund of China under Grant 52074306in part by the National Key Research and Development Program of China under Grant 2019YFC1805504in part by the Fundamental Research Funds for the Central Universities under Grant 2023JCCXHH02。
文摘This study combines ground penetrating radar(GPR)and convolutional neural networks for the intelligent detection of underground road targets.The target location was realized using a gradient-class activation map(Grad-CAM).First,GPR technology was used to detect roads and obtain radar images.This study constructs a radar image dataset containing 3000 underground road radar targets,such as underground pipelines and holes.Based on the dataset,a ResNet50 network was used to classify and train different underground targets.During training,the accuracy of the training set gradually increases and finally fluctuates approximately 85%.The loss function gradually decreases and falls between 0.2 and 0.3.Finally,targets were located using Grad-CAM.The positioning results of single and multiple targets are consistent with the actual position,indicating that the method can eff ectively realize the intelligent detection of underground targets in GPR.
基金supported by the National Natural Science Foundation of China(61806024,62206257)the Jilin Province Science and Technology Development Plan Key Research and Development Project(20210204050YY)+1 种基金the Wuxi University Research Start-up Fund for Introduced Talents(2023r004,2023r006)Jiangsu Engineering Research Center of Hyperconvergence Application and Security of IoT Devices,Jiangsu Foreign Expert Workshop,Wuxi City Internet of Vehicles Key Laboratory.
文摘In this paper,a reasoning enhancement method based on RGCN(Relational Graph Convolutional Network)is proposed to improve the detection capability of UAV(Unmanned Aerial Vehicle)on fast-moving military targets in urban battlefield environments.By combining military images with the publicly available VisDrone2019 dataset,a new dataset called VisMilitary was built and multiple YOLO(You Only Look Once)models were tested on it.Due to the low confidence problem caused by fuzzy targets,the performance of traditional YOLO models on real battlefield images decreases significantly.Therefore,we propose an improved RGCN inference model,which improves the performance of the model in complex environments by optimizing the data processing and graph network architecture.Experimental results show that the proposed method achieves an improvement of 0.4%to 1.7%on mAP@0.50,which proves the effectiveness of the model in military target detection.The research of this paper provides a new technical path for UAV target detection in urban battlefield,and provides important enlightenment for the application of deep learning in military field.
基金supported by the National Key R&D Program“Development and Application Verification of Underwater Intelligent Defect Detection Robot System for Large Hydropower Station Dams”(Project No.2022YFB4703400)sub-topic 4“Research on Intelligent Identification and Diagnosis of Dam Defects and Fine Inspection Equipment and Technology of Hydropower Stations”(Project No.2022YFB4703404)supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029。
文摘Infrared small-target detection has important applications in many fields due to its high penetration capability and detection distance.This study introduces a detector called“YOLO-SDLUWD”which is based on the YOLOv7 network,for small target detection in complex infrared backgrounds.The“SDLUWD”refers to the combination of the Spatial Depth layer followed Convolutional layer structure(SD-Conv)and a Linear Up-sampling fusion Path Aggregation Feature Pyramid Network(LU-PAFPN)and a training strategy based on the normalized Gaussian Wasserstein Distance loss(WD-loss)function.“YOLO-SDLUWD”aims to reduce detection accuracy when the maximum pooling downsampling layer in the backbone network loses important feature information,support the interaction and fusion of high-dimensional and low-dimensional feature information,and overcome the false alarm predictions induced by noise in small target images.The detector achieved a mAP@0.5 of 90.4%and mAP@0.5:0.95 of 48.5%on IRIS-AG,an increase of 9%-11%over YOLOv7-tiny,outperforming other state-of-the-art target detectors in terms of accuracy and speed.
文摘To address low detection accuracy in near-coastal vessel target detection under complex conditions,a novel near-coastal vessel detection model based on an improved YOLOv7 architecture is proposed in this paper.The attention mechanism Coordinate Attention is used to improve channel attention weight and enhance a network’s ability to extract small target features.In the enhanced feature extraction network,the lightweight convolution algorithm Grouped Spatial Convolution is used to replace MPConv to reduce model calculation costs.EIoU Loss is used to replace the regression frame loss function in YOLOv7 to reduce the probability of missed and false detection.The performance of the improved model was verified using an enhanced dataset obtained through rainy and foggy weather simulation.Experiments were conducted on the datasets before and after the enhancement.The improved model achieved a mean average precision(mAP)of 97.45%on the original dataset,and the number of parameters was reduced by 2%.On the enhanced dataset,the mAP of the improved model reached 88.08%.Compared with seven target detection models,such as Faster R-CNN,YOLOv3,YOLOv4,YOLOv5,YOLOv7,YOLOv8-n,and YOLOv8-s,the improved model can effectively reduce the missed and false detection rates and improve target detection accuracy.The improved model not only accurately detects vessels in complex weather environments but also outperforms other methods on original and enhanced SeaShip datasets.This finding shows that the improved model can achieve near-coastal vessel target detection in multiple environments,laying the foundation for vessel path planning and automatic obstacle avoidance.
基金supported in part by the National Natural Science Foundation of China under Grant 62271302the Shanghai Municipal Natural Science Foundation under Grant 20ZR1423500.
文摘Infrared images typically exhibit diverse backgrounds,each potentially containing noise and target-like interference elements.In complex backgrounds,infrared small targets are prone to be submerged by background noise due to their low pixel proportion and limited available features,leading to detection failure.To address this problem,this paper proposes an Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network(ASCFNet)tailored for the detection of infrared weak and small targets.The network architecture first designs a Multidimensional Lightweight Pixel-level Attention Module(MLPA),which alleviates the issue of small-target feature suppression during deep network propagation by combining channel reshaping,multi-scale parallel subnet architectures,and local cross-channel interactions.Then,a Multidimensional Shift-Invariant Recall Module(MSIR)is designed to ensure the network remains unaffected by minor input perturbations when processing infrared images,through focusing on the model’s shift invariance.Subsequently,a Cross-Evolutionary Feature Fusion structure(CEFF)is designed to allow flexible and efficient integration of multidimensional feature information from different network hierarchies,thereby achieving complementarity and enhancement among features.Experimental results on three public datasets,SIRST,NUDT-SIRST,and IRST640,demonstrate that our proposed network outperforms advanced algorithms in the field.Specifically,on the NUDT-SIRST dataset,the mAP50,mAP50-95,and metrics reached 99.26%,85.22%,and 99.31%,respectively.Visual evaluations of detection results in diverse scenarios indicate that our algorithm exhibits an increased detection rate and reduced false alarm rate.Our method balances accuracy and real-time performance,and achieves efficient and stable detection of infrared weak and small targets.
基金supported by the National Natural Science Foundation of China (No.52205548)。
文摘To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-feature local difference.Firstly,an improved high-boost filter is used for preprocessing to eliminate background clutter and high-brightness interference,thereby increasing the probability of capturing real targets in the density peak search.Secondly,a triple-layer window is used to extract features from the area surrounding candidate targets,addressing the uncertainty of small target sizes.By calculating multi-feature local differences between the triple-layer windows,the problems of blurred target edges and low contrast are resolved.To balance the contribution of different features,intra-class distance is used to calculate weights,achieving weighted fusion of multi-feature local differences to obtain the weighted multi-feature local differences of candidate targets.The real targets are then extracted using the interquartile range.Experiments on datasets such as SIRST and IRSTD-IK show that the proposed method is suitable for various complex types and demonstrates good robustness and detection performance.
文摘In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address these challenges,this paper proposes an improved detection algorithm based on YOLOv11n.First,a Dynamic Multi-Scale Feature Fusion and Adaptive Weighting approach is employed to design an Adaptive Focused Diffusion Pyramid Network(AFDPN),which enhances the feature expression and transmission capability of shallow small targets,thereby reducing the loss of detailed information.Then,combined with an Edge Enhancement(EE)module,the model improves the extraction of infrared small target edge features through low-frequency suppression and high-frequency enhancement strategies.Experimental results on the publicly available HIT-UAV dataset show that the improved model achieves a 3.8%increase in average detection accuracy and a 3.0%improvement in recall rate compared to YOLOv11n,with a computational cost of only 9.1 GFLOPS.In comparison experiments,the detection accuracy and model size balance achieved the optimal solution,meeting the lightweight deployment requirements for drone-based systems.This method provides a high-precision,lightweight solution for small target detection in drone-based infrared imagery.
基金supported in part by Youth Innovation Promotion Association,Chinese Academy of Sciences under Grant 2022022in part by South China Sea Nova project of Hainan Province under Grant NHXXRCXM202340in part by the Scientific Research Foundation Project of Hainan Acoustics Laboratory under grant ZKNZ2024001.
文摘Underwater target detection in forward-looking sonar(FLS)images is a challenging but promising endeavor.The existing neural-based methods yield notable progress but there remains room for improvement due to overlooking the unique characteristics of underwater environments.Considering the problems of low imaging resolution,complex background environment,and large changes in target imaging of underwater sonar images,this paper specifically designs a sonar images target detection Network based on Progressive sensitivity capture,named ProNet.It progressively captures the sensitive regions in the current image where potential effective targets may exist.Guided by this basic idea,the primary technical innovation of this paper is the introduction of a foundational module structure for constructing a sonar target detection backbone network.This structure employs a multi-subspace mixed convolution module that initially maps sonar images into different subspaces and extracts local contextual features using varying convolutional receptive fields within these heterogeneous subspaces.Subsequently,a Scale-aware aggregation module effectively aggregates the heterogeneous features extracted from different subspaces.Finally,the multi-scale attention structure further enhances the relational perception of the aggregated features.We evaluated ProNet on three FLS datasets of varying scenes,and experimental results indicate that ProNet outperforms the current state-of-the-art sonar image and general target detectors.
文摘When a fire breaks out in a high-rise building,the occlusion of smoke and obstacles results in dearth of crucial information concerning people in distress,thereby creating a challenge in their detection.Given the restricted sensing range of a single unmanned aerial vehicle(UAV)cam-era,enhancing the target recognition rate becomes challenging without target information.To tackle this issue,this paper proposes a multi-agent autonomous collaborative detection method for multi-targets in complex fire environments.The objective is to achieve the fusion of multi-angle visual information,effectively increasing the target’s information dimension,and ultimately address-ing the problem of low target recognition rate caused by the lack of target information.The method steps are as follows:first,the you only look once version5(YOLOv5)is used to detect the target in the image;second,the detected targets are tracked to monitor their movements and trajectories;third,the person re-identification(ReID)model is employed to extract the appearance features of targets;finally,by fusing the visual information from multi-angle cameras,the method achieves multi-agent autonomous collaborative detection.The experimental results show that the method effectively combines the visual information from multi-angle cameras,resulting in improved detec-tion efficiency for people in distress.
基金funded by the Jilin City Science and Technology Innovation Development Plan Project(No.20240302014)the Jilin Provincial Department of Educa-tion Science and Technology Research Project(No.JJKH 20250879KJ)the Jilin Province Science and Tech-nology Development Plan Project(No.YDZJ202401640 ZYTS).
文摘Underwater imaging is frequently influenced by factors such as illumination,scattering,and refraction,which can result in low image contrast and blurriness.Moreover,the presence of numerous small,overlapping targets reduces detection accuracy.To address these challenges,first,green channel images are preprocessed to rectify color bias while improving contrast and clarity.Se-cond,the YOLO-DBS network that employs deformable convolution is proposed to enhance feature learning from underwater blurry images.The ECA attention mechanism is also introduced to strengthen feature focus.Moreover,a bidirectional feature pyramid net-work is utilized for efficient multilayer feature fusion while removing nodes that contribute minimally to detection performance.In addition,the SIoU loss function that considers factors such as angular error and distance deviation is incorporated into the network.Validation on the RUOD dataset demonstrates that YOLO-DBS achieves approximately 3.1%improvement in mAP@0.5 compared with YOLOv8n and surpasses YOLOv9-tiny by 1.3%.YOLO-DBS reduces parameter count by 32%relative to YOLOv8n,thereby demonstrating superior performance in real-time detection on underwater observation platforms.
基金The National Natural Science Foundation of China (No.61172135,61101198)the Aeronautical Foundation of China (No.20115152026)
文摘In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.