Target is one of the essential parts in inertial confinement fusion(ICF)experiments.To ensure the symmetry and hydrodynamic stability in the implosion,there are stringent specifications for the target.Driven by the ne...Target is one of the essential parts in inertial confinement fusion(ICF)experiments.To ensure the symmetry and hydrodynamic stability in the implosion,there are stringent specifications for the target.Driven by the need to fabricate the target required by ICF experiments,a series of target fabrication techniques,including capsule fabrication techniques and the techniques of target characterization and assembly,are developed by the Research Center of Laser Fusion(RCLF),China Academy of Engineering Physics(CAEP).The capsule fabrication techniques for preparing polymer shells,glow discharge polymer(GDP)shells and hollow glass micro-sphere(HGM)are studied,and the techniques of target characterization and assembly are also investigated in this paper.Fundamental research about the target fabrication is also done to improve the quality of the target.Based on the development of target fabrication techniques,some kinds of target have been prepared and applied in the ICF experiments.展开更多
Targets for low-adiabat direct-drive-implosion experiments on OMEGA must meet rigorous specifications and tight tolerances on the diameter,wall thickness,wall-thickness uniformity,and presence of surface features.Of t...Targets for low-adiabat direct-drive-implosion experiments on OMEGA must meet rigorous specifications and tight tolerances on the diameter,wall thickness,wall-thickness uniformity,and presence of surface features.Of these,restrictions on the size and number of defects(bumps and depressions)on the surface are the most challenging.The properties of targets that are made using vapor-deposition and solution-based microencapsulation techniques are reviewed.Targets were characterized using confocal microscopy,bright-and dark-field microscopy,atomic force microscopy,electron microscopy,and interferometry.Each technique has merits and limitations,and a combination of these techniques is necessary to adequately characterize a target.The main limitation with the glow-discharge polymerization(GDP)method for making targets is that it produces hundreds of domes with a lateral dimension of 0.7-2 μm.Polishing these targets reduces the size of some but not all domes,but it adds scratches and grooves to the surface.Solution-made polystyrene shells lack the dome features of GDP targets but have hundreds of submicrometer-size voids throughout the wall of the target;a few of these voids can be as large as~12 μm at the surface.展开更多
文摘Target is one of the essential parts in inertial confinement fusion(ICF)experiments.To ensure the symmetry and hydrodynamic stability in the implosion,there are stringent specifications for the target.Driven by the need to fabricate the target required by ICF experiments,a series of target fabrication techniques,including capsule fabrication techniques and the techniques of target characterization and assembly,are developed by the Research Center of Laser Fusion(RCLF),China Academy of Engineering Physics(CAEP).The capsule fabrication techniques for preparing polymer shells,glow discharge polymer(GDP)shells and hollow glass micro-sphere(HGM)are studied,and the techniques of target characterization and assembly are also investigated in this paper.Fundamental research about the target fabrication is also done to improve the quality of the target.Based on the development of target fabrication techniques,some kinds of target have been prepared and applied in the ICF experiments.
基金This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944the University of Rochester,and the New York State Energy Research and Development Authority.
文摘Targets for low-adiabat direct-drive-implosion experiments on OMEGA must meet rigorous specifications and tight tolerances on the diameter,wall thickness,wall-thickness uniformity,and presence of surface features.Of these,restrictions on the size and number of defects(bumps and depressions)on the surface are the most challenging.The properties of targets that are made using vapor-deposition and solution-based microencapsulation techniques are reviewed.Targets were characterized using confocal microscopy,bright-and dark-field microscopy,atomic force microscopy,electron microscopy,and interferometry.Each technique has merits and limitations,and a combination of these techniques is necessary to adequately characterize a target.The main limitation with the glow-discharge polymerization(GDP)method for making targets is that it produces hundreds of domes with a lateral dimension of 0.7-2 μm.Polishing these targets reduces the size of some but not all domes,but it adds scratches and grooves to the surface.Solution-made polystyrene shells lack the dome features of GDP targets but have hundreds of submicrometer-size voids throughout the wall of the target;a few of these voids can be as large as~12 μm at the surface.