Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
There was a new concept of ‘adaptive or targeting observation’ in recent years, which is anadditional and targeting observation based on the existing and fixed observing network for the atmosphere on theimpacted reg...There was a new concept of ‘adaptive or targeting observation’ in recent years, which is anadditional and targeting observation based on the existing and fixed observing network for the atmosphere on theimpacted region. Dropsonde is one of the important observing instruments in the adaptive or targetingobservation. In this paper, GRAPES, the next generation of numerical weather prediction system of China hasbeen used. The impacts on the typhoon Dujuan (No.200315) forecast in experiments with dropsonde have beenstudied and experiments on sensitivity have also been done. It was found that the forecasts of the elements havebeen improved obviously with the use of dropsonde, such as the path, the center location, and the intensity oftyphoon. It was also found in the sensitivity studies that the setting of deviation structure also has obviousimpacts on the forecast for typhoons. It is not true that the simulation is better when the proportion of the data ofdropsonde is larger in the course to modify the background.展开更多
To mitigate the deleterious effects of clutter and jammer, modern radars have adopted adaptive processing techniques such as constant false alarm rate(CFAR) detectors which are widely used to prevent clutter and noise...To mitigate the deleterious effects of clutter and jammer, modern radars have adopted adaptive processing techniques such as constant false alarm rate(CFAR) detectors which are widely used to prevent clutter and noise interference from saturating the radar’s display and preventing targets from being obscured.This paper concerns with the detection analysis of the novel version of CFAR schemes(cell-averaging generalized trimmed-mean,CATM) in the presence of additional outlying targets other than the target under research. The spurious targets as well as the tested one are assumed to be fluctuating in accordance with the χ~2-model with two-degrees of freedom. In this situation, the processor performance is enclosed by the swerling models(SWI and SWII). Between these bounds, there is an important class of target fluctuation which is known as moderately fluctuating targets. The detection of this class has many practical applications. Structure of the CATM detector is described briefly. Detection performances for optimal, CAM, CA, trimmed-mean(TM) and ordered-statistic(OS) CFAR strategies have been analyzed and compared for desired probability of false alarm and determined size of the reference window. False alarm rate performance of these processors has been evaluated for different strengths of interfering signal and the effect of correlation among the target returns on the detection and false alarm performances has also been studied. Our numerical results show that, with a proper choice of trimming parameters,the novel model CAM presents an ideal detection performance outweighing that of the Neyman-Pearson detector on condition that the tested target obeys the SWII model in its fluctuation. Although the new models CAS and CAM can be treated as special cases of the CATM algorithm, their multi-target performance is modest even it has an enhancement relative to that of the classical CAcheme. Additionally, they fail to maintain the false alarm rate constant when the operating environment is of type target multiplicity. Moreover, the non-coherent integration of M pulses ameliorates the processor performance either it operates in homogeneous or multi-target environment.展开更多
In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A...In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.展开更多
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
基金Multiple time levels of Dynamic / Physical Processes with Lagrange Non-hydrostatic GlobalModel and Study on the Coordination of Correlation (40575050)
文摘There was a new concept of ‘adaptive or targeting observation’ in recent years, which is anadditional and targeting observation based on the existing and fixed observing network for the atmosphere on theimpacted region. Dropsonde is one of the important observing instruments in the adaptive or targetingobservation. In this paper, GRAPES, the next generation of numerical weather prediction system of China hasbeen used. The impacts on the typhoon Dujuan (No.200315) forecast in experiments with dropsonde have beenstudied and experiments on sensitivity have also been done. It was found that the forecasts of the elements havebeen improved obviously with the use of dropsonde, such as the path, the center location, and the intensity oftyphoon. It was also found in the sensitivity studies that the setting of deviation structure also has obviousimpacts on the forecast for typhoons. It is not true that the simulation is better when the proportion of the data ofdropsonde is larger in the course to modify the background.
文摘To mitigate the deleterious effects of clutter and jammer, modern radars have adopted adaptive processing techniques such as constant false alarm rate(CFAR) detectors which are widely used to prevent clutter and noise interference from saturating the radar’s display and preventing targets from being obscured.This paper concerns with the detection analysis of the novel version of CFAR schemes(cell-averaging generalized trimmed-mean,CATM) in the presence of additional outlying targets other than the target under research. The spurious targets as well as the tested one are assumed to be fluctuating in accordance with the χ~2-model with two-degrees of freedom. In this situation, the processor performance is enclosed by the swerling models(SWI and SWII). Between these bounds, there is an important class of target fluctuation which is known as moderately fluctuating targets. The detection of this class has many practical applications. Structure of the CATM detector is described briefly. Detection performances for optimal, CAM, CA, trimmed-mean(TM) and ordered-statistic(OS) CFAR strategies have been analyzed and compared for desired probability of false alarm and determined size of the reference window. False alarm rate performance of these processors has been evaluated for different strengths of interfering signal and the effect of correlation among the target returns on the detection and false alarm performances has also been studied. Our numerical results show that, with a proper choice of trimming parameters,the novel model CAM presents an ideal detection performance outweighing that of the Neyman-Pearson detector on condition that the tested target obeys the SWII model in its fluctuation. Although the new models CAS and CAM can be treated as special cases of the CATM algorithm, their multi-target performance is modest even it has an enhancement relative to that of the classical CAcheme. Additionally, they fail to maintain the false alarm rate constant when the operating environment is of type target multiplicity. Moreover, the non-coherent integration of M pulses ameliorates the processor performance either it operates in homogeneous or multi-target environment.
基金supported by the National Natural Science Foundation of China(91538201)
文摘In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.