This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive mod...This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive model for analyzing icing effects on swept tailplanes.The method relies on a multi-fidelity data gathering campaign,enabling seamless integration into multidisciplinary aircraft design workflows.A dataset of iced airfoil shapes was generated using 2D inviscid methods across various flight conditions.High-fidelity CFD simulations were conducted on both clean and iced geometries,forming a multidimensional aerodynamic database.This 2D database feeds a nonlinear vortex lattice method to estimate 3D aerodynamic characteristics,following a'quasi-3D'approach.The resulting reduced-order model delivers fast aerodynamic performance estimates of iced tailplanes.To demonstrate its effectiveness,optimal ice-tolerant tailplane designs were selected from a range of feasible shapes based on a reference transport aircraft.The analysis validates the model's reliability,accuracy,and limitations concerning 3D ice shapes and aerodynamic characteristics.Most notably,the model offers near-zero computational cost compared to high-fidelity simulations,making it a valuable tool for efficient aircraft design.展开更多
基金funding from the Department of Industrial Engineering,University of Naples FedericoⅡ,Italy。
文摘This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive model for analyzing icing effects on swept tailplanes.The method relies on a multi-fidelity data gathering campaign,enabling seamless integration into multidisciplinary aircraft design workflows.A dataset of iced airfoil shapes was generated using 2D inviscid methods across various flight conditions.High-fidelity CFD simulations were conducted on both clean and iced geometries,forming a multidimensional aerodynamic database.This 2D database feeds a nonlinear vortex lattice method to estimate 3D aerodynamic characteristics,following a'quasi-3D'approach.The resulting reduced-order model delivers fast aerodynamic performance estimates of iced tailplanes.To demonstrate its effectiveness,optimal ice-tolerant tailplane designs were selected from a range of feasible shapes based on a reference transport aircraft.The analysis validates the model's reliability,accuracy,and limitations concerning 3D ice shapes and aerodynamic characteristics.Most notably,the model offers near-zero computational cost compared to high-fidelity simulations,making it a valuable tool for efficient aircraft design.