期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合自注意力的Bert-BiGRU-CRF的文本因果关系抽取
1
作者 高宁波 张晓滨 《计算机与现代化》 2025年第7期112-118,共7页
针对自然语言文本因果关系抽取中存在的标记方案无法处理重叠关系以及长距离依赖性的问题,本文引入tag2triplet算法来处理同一句子中的多个因果三元组和嵌入式因果关系的因果三元组,并将因果性标记方案与深度学习架构相结合用以最小化... 针对自然语言文本因果关系抽取中存在的标记方案无法处理重叠关系以及长距离依赖性的问题,本文引入tag2triplet算法来处理同一句子中的多个因果三元组和嵌入式因果关系的因果三元组,并将因果性标记方案与深度学习架构相结合用以最小化特征工程,同时有效地对因果关系建模。此外,本文将自注意力机制融合到Bert-BiGRU-CRF模型中以学习因果关系之间的长距离依赖性,允许信息在网络中自由流动,从而更准确地提取因果关系。为了验证该方法的有效性,将模型与目前广泛使用的BiLSTM-softmax模型、BiLSTM-CRF模型和Flair+CLSTM-BiLSTM-CRF模型在SemEval 2010 task8数据集上进行对比实验,结果表明,本文模型的F1评价指标分数更高,达到了83.44%。 展开更多
关键词 因果关系抽取 tag2triplet算法 Bert-BiGRU-CRF 自注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部