期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microscopic swelling behaviors and structural responses of aggregate system: A coarse-grained molecular dynamics study
1
作者 Kaiwen Tong Jean-Michel Pereira +4 位作者 Fei Yu Jianhua Guo Zihang Liu Zhangjun Dai Shanxiong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3833-3844,共12页
To overcome the limitations of microscale experimental techniques and molecular dynamics(MD)simulations,a coarse-grained molecular dynamics(CGMD)method was used to simulate the wetting processes of clay aggregates.Bas... To overcome the limitations of microscale experimental techniques and molecular dynamics(MD)simulations,a coarse-grained molecular dynamics(CGMD)method was used to simulate the wetting processes of clay aggregates.Based on the evolution of swelling stress,final dry density,water distribution,and clay arrangements under different target water contents and dry densities,a relationship between the swelling behaviors and microstructures was established.The simulated results showed that when the clay-water well depth was 300 kcal/mol,the basal spacing from CGMD was consistent with the X-ray diffraction(XRD)data.The effect of initial dry density on swelling stress was more pronounced than that of water content.The anisotropic swelling characteristics of the aggregates are related to the proportion of horizontally oriented clay mineral layers.The swelling stress was found to depend on the distribution of tactoids at the microscopic level.At lower initial dry density,the distribution of tactoids was mainly controlled by water distribution.With increase in the bound water content,the basal spacing expanded,and the swelling stresses increased.Free water dominated at higher water contents,and the particles were easily rotated,leading to a decrease in the number of large tactoids.At higher dry densities,the distances between the clay mineral layers decreased,and the movement was limited.When bound water enters the interlayers,there is a significant increase in interparticle repulsive forces,resulting in a greater number of small-sized tactoids.Eventually,a well-defined logarithmic relationship was observed between the swelling stress and the total number of tactoids.These findings contribute to a better understanding of coupled macro-micro swelling behaviors of montmorillonite-based materials,filling a study gap in clay-water interactions on a micro scale. 展开更多
关键词 Coarse-grained molecular dynamics (CGMD) Clay aggregates Swelling stress Water distribution Distribution of tactoids
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部