The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono-and multi-el...The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono-and multi-element geochemical anomalies associated with Cu–Au–Mo–Bi mineralization in the central parts of the Varzaghan district by applying the concentration–area fractal method. After mono-element geochemical investigations, principal component analysis was applied to ten selected elements in order to acquire a multi-element geochemical signature based on the mineralization-related component. Quantitative comparisons of the obtained fractal-based populations were carried out in accordance with known Cu occurrences using Student's t-values. Then,significant mono-and multi-element geochemical layers were separately combined with related geologic and structural layers to generate prospectivity models, using the fuzzy GAMMA approach. For quantitative evaluation of the effectiveness of different geochemical signatures in final prospectivity models, a prediction-area plot was adapted. The results show that the multi-element geochemical signature of principal component one(PC1) is more effective than mono-element layers in delimiting exploration targets related to porphyry Cu deposits.展开更多
In the paper, cooperative two-stage network games are studied. At the first stage of the game, players form a network, while at the second stage players choose their behaviors according to the network realized at the ...In the paper, cooperative two-stage network games are studied. At the first stage of the game, players form a network, while at the second stage players choose their behaviors according to the network realized at the first stage. As a cooperative solution concept in the game, the core is considered.It is proved that some imputations from the core are time inconsistent, whereas one can design for them a time-consistent imputation distribution procedure. Moreover, the strong time consistency problem is also investigated.展开更多
文摘The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono-and multi-element geochemical anomalies associated with Cu–Au–Mo–Bi mineralization in the central parts of the Varzaghan district by applying the concentration–area fractal method. After mono-element geochemical investigations, principal component analysis was applied to ten selected elements in order to acquire a multi-element geochemical signature based on the mineralization-related component. Quantitative comparisons of the obtained fractal-based populations were carried out in accordance with known Cu occurrences using Student's t-values. Then,significant mono-and multi-element geochemical layers were separately combined with related geologic and structural layers to generate prospectivity models, using the fuzzy GAMMA approach. For quantitative evaluation of the effectiveness of different geochemical signatures in final prospectivity models, a prediction-area plot was adapted. The results show that the multi-element geochemical signature of principal component one(PC1) is more effective than mono-element layers in delimiting exploration targets related to porphyry Cu deposits.
基金supported by the Russian Foundation for Basic Research under Grant No.13-01-91160Saint Petersburg State University under Grant No.9.38.245.2014+4 种基金the National Natural Science Foundation of China under Grant Nos.71171120,71373262,and 71571108Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20133706110002Projects of International(Regional)Cooperation and Exchanges of the National Science Foundation of China under Grant Nos.71411130215 and 61661136002Natural Science Foundation of Shandong Province,China under Grant No.ZR2015GZ007Graduate Student Education Innovation Plan of Qingdao University under Grant Nos.QDY12017 and QDY13004
文摘In the paper, cooperative two-stage network games are studied. At the first stage of the game, players form a network, while at the second stage players choose their behaviors according to the network realized at the first stage. As a cooperative solution concept in the game, the core is considered.It is proved that some imputations from the core are time inconsistent, whereas one can design for them a time-consistent imputation distribution procedure. Moreover, the strong time consistency problem is also investigated.