期刊文献+
共找到280,443篇文章
< 1 2 250 >
每页显示 20 50 100
基于机器视觉技术和t-SNE的输送带损伤检测研究 被引量:1
1
作者 袁媛 高波 +1 位作者 周利东 程青丽 《太原科技大学学报》 2025年第4期370-376,共7页
针对输送机运行过程中输送带易出现划伤、撕裂及破损等问题,提出了一种基于机器视觉技术和t-SNE的输送带损伤检测方法,在视觉提取特征网络中引入t-SNE降维处理,解决视觉特征数据的冗杂,以便于数据的高效利用。通过故障实验模拟了输送带... 针对输送机运行过程中输送带易出现划伤、撕裂及破损等问题,提出了一种基于机器视觉技术和t-SNE的输送带损伤检测方法,在视觉提取特征网络中引入t-SNE降维处理,解决视觉特征数据的冗杂,以便于数据的高效利用。通过故障实验模拟了输送带的各类损伤,然后利用机器视觉技术收集并提取损伤特征,对特征数据进行t-SNE分类,最后采用不同核函数的SVM支持向量机对分类结果进行处理,结果表明,基于t-SNE结合机器视觉技术的输送带损伤检测方法便于判别输送带的多类故障,为输送带故障的检测及智能化维护提供理论支撑。 展开更多
关键词 输送带 故障诊断 机器视觉 t-sne SVM
在线阅读 下载PDF
基于t-SNE和ECOC-ISSA-SVM的变压器故障诊断
2
作者 刘蒙 赵晨晓 +4 位作者 朱乔波 李梁 姚旭 李鑫 赵明 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第5期606-613,共8页
为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引... 为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引入纠错输出码(error correction output codes,ECOC),将改进麻雀搜索算法(improved sparrow search algorithm,ISSA)与切比雪夫混沌映射、柯西-高斯变分策略相结合,优化SVM超参数,处理多分类问题。研究结果表明:ECOC-ISSA-SVM(t-SNE)模型的诊断精度、召回率、特异性和F1值分别为95.6%、97.8%、99.6%和97.8%,各项指标较传统模型提升效果显著,诊断时间缩短至11 ms,诊断效率显著提高。研究结论为电力设备智能运维提供技术支持。 展开更多
关键词 故障诊断 变压器 油中溶解气体 支持向量机 麻雀搜索算法 t-sne降维 纠错输出码
原文传递
基于t-SNE多特征融合的风力机塔架异常检测方法
3
作者 张文韬 秦仙蓉 +2 位作者 杨穹 侯冰柠 张氢 《太阳能学报》 北大核心 2025年第9期91-97,共7页
针对风力发电机塔架的异常状态识别问题,根据监测的结构响应信号,提出一种基于t-分布随机邻域嵌入(t-SNE)多特征融合的结构异常检测方法。该方法通过估计信号的时域、频域和时频域统计指标,提取塔架的高维特征向量;利用t-SNE算法进行降... 针对风力发电机塔架的异常状态识别问题,根据监测的结构响应信号,提出一种基于t-分布随机邻域嵌入(t-SNE)多特征融合的结构异常检测方法。该方法通过估计信号的时域、频域和时频域统计指标,提取塔架的高维特征向量;利用t-SNE算法进行降维融合,得到数据在低维空间的可视化表达;采用聚类算法分析数据状态,构建异常指标定量分析,实现结构异常检测。对风力机塔架在台风期与地震期的工程实际应用表明,所提方法可清晰地识别出因环境因素变化所引起的结构响应异常。 展开更多
关键词 风力发电机 异常检测 数据可视化 特征融合 t-分布随机邻域嵌入(t-sne)
原文传递
基于t-SNE-VNWOA的船舶柴油机热工故障诊断
4
作者 陈家君 李蕾 +3 位作者 李芷倩 陈诗文 肖金龙 尚前明 《舰船科学技术》 北大核心 2025年第3期82-88,共7页
针对传统的船舶柴油机故障诊断方法难以快速准确定位故障的问题,提出一种基于流形学习结合智能算法的诊断模型。以MAN B&W 16 L/24型船用柴油机为研究对象,选用AVL-BOOST软件搭建仿真模型,对单缸喷油过多、喷油提前及气门正时故障... 针对传统的船舶柴油机故障诊断方法难以快速准确定位故障的问题,提出一种基于流形学习结合智能算法的诊断模型。以MAN B&W 16 L/24型船用柴油机为研究对象,选用AVL-BOOST软件搭建仿真模型,对单缸喷油过多、喷油提前及气门正时故障进行模拟,再利用t-SNE对高维故障热工参数降维,并将新特征输入VNWOALSSVM分类模型。重复训练-测试结果表明,t-SNE-VNWOA-LSSVM故障诊断模型具有良好稳定性,且诊断精度可达98.67%。该智能诊断模型可作为船舶柴油机故障诊断的有效手段。 展开更多
关键词 柴油机 热工参数 t-sne 故障诊断 VNWOA LSSVM
在线阅读 下载PDF
基于t-SNE的重载铁路钢轨波磨伤损演化指标
5
作者 王忠美 邓玮 +3 位作者 刘建华 聂芃轩 吴海波 王文昆 《科学技术与工程》 北大核心 2025年第10期4199-4205,共7页
认识钢轨服役性能演化规律对降低重载铁路钢轨运维成本具有重要意义。针对钢轨运行环境复杂多变,难以构建科学有效的伤损演化指标以反映客观发展规律的问题,提出了基于t-分布随机近邻分布(t-distributed stochastic neighbor embedding,... 认识钢轨服役性能演化规律对降低重载铁路钢轨运维成本具有重要意义。针对钢轨运行环境复杂多变,难以构建科学有效的伤损演化指标以反映客观发展规律的问题,提出了基于t-分布随机近邻分布(t-distributed stochastic neighbor embedding,t-SNE)的波磨伤损演化规律构建方法。首先,对钢轨原始波磨振动信号提取时域、频域、统计学、熵的特征指标;然后,使用随机森林算法对特征进行特征重要性排名,选取排名靠前的特征构建特征矢量;接着使用t-SNE等方式降维,验证了t-SNE更具优势,使用欧氏距离度量和中值滤波法进行平滑处理得到最终的时序性伤损退化指标。结果表明本文方法对于伤损阶段的划分具有较好的区分度、抗干扰能力和工程实用性。 展开更多
关键词 钢轨波磨 伤损演化规律 退化趋势特征 t-sne 伤损阶段
在线阅读 下载PDF
基于t-SNE及SVM的低功率因数下电力负荷分类研究
6
作者 刘型志 程瑛颖 +2 位作者 要文波 田娟 曾妍 《电测与仪表》 北大核心 2025年第11期137-144,共8页
当前的智能电网背景下,典型低功率因数负荷场景繁多,不同场景的特征差异化较小,电力负荷数据结构复杂,导致低功率电力负荷分类一直都是实际研究中的难题。需开发先进模型提高分类准确性和效率。文中将聚类分析和分类器识别结合起来,尝... 当前的智能电网背景下,典型低功率因数负荷场景繁多,不同场景的特征差异化较小,电力负荷数据结构复杂,导致低功率电力负荷分类一直都是实际研究中的难题。需开发先进模型提高分类准确性和效率。文中将聚类分析和分类器识别结合起来,尝试从基于t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,t-SNE)算法和改进的K-means的电力负荷曲线聚类分析和基于支持向量机(support vector machine,SVM)分类器的负荷模式识别组合进行分析和实现;其中t-SNE算法不仅能反映原始数据的局部敏感性的同时,而且保留其全局结构特征,能有效应用于低功率因数的负荷数据;而改进的K-means采用肘准则确定聚类数K值,再使用基于数据集密度和相异性属性的方法选择初始中心点,能有效提高计算效率、准确性和聚类稳定性;其中SVM分类器则能充分利用聚类结果和特征,当分类器被训练好,就可以迅速对新的未知负载数据进行智能分类和识别,提高效率。文中并从SC、CHI、DBI这些效度指标,评估模型的聚类效果的有效性和稳定性,均得到不错结果,并且SVM分类器在测试集上分类正确率达到100%。 展开更多
关键词 低功率因数负荷 t-sne算法 K-means聚类分析 SVM分类器 效度指标
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
7
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
8
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
9
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
10
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
11
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于t-SNE降维和DBSCAN算法的多参数雷达信号分选方法
12
作者 李开宇 宋长波 +1 位作者 胡继军 张国玉 《遥测遥控》 2025年第3期139-145,共7页
随着雷达信号的复杂性增加,传统的信号处理方法逐渐暴露出诸多不足之处。本文提出了一种基于t-分布随机邻居嵌入(t-SNE)降维技术与基于密度的聚类算法(DBSCAN)的雷达信号分选算法,旨在解决多参数雷达信号分选中的挑战。t-SNE通过降低数... 随着雷达信号的复杂性增加,传统的信号处理方法逐渐暴露出诸多不足之处。本文提出了一种基于t-分布随机邻居嵌入(t-SNE)降维技术与基于密度的聚类算法(DBSCAN)的雷达信号分选算法,旨在解决多参数雷达信号分选中的挑战。t-SNE通过降低数据的维度,能够有效提取出数据的主要特征并减少噪声和冗余信息,从而为后续的DBSCAN聚类提供了更清晰的数据分界。实验生成了五种不同类型的雷达信号数据,并使用t-SNE和DBSCAN进行降维和聚类,实验结果显示:t-SNE降维结合DBSCAN聚类算法在纯度和轮廓系数等指标上均表现出色,验证了该方法在复杂雷达信号分选中的有效性。 展开更多
关键词 t-sne降维 PDW脉冲描述字 雷达信号分选 聚类分析
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
13
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
基于无监督t-SNE算法和随钻测试的地层风化程度研究
14
作者 赵卫冬 王怀庆 +1 位作者 张晓杰 王腾 《工程勘察》 2025年第1期19-25,共7页
本文提出了一种基于无监督学习和随钻测试技术对地层风化程度进行预测的方法。随钻测试技术提供了一种对地层进行实时评估的手段,且能够反映地层的连续变化。这些多维度的钻进参数蕴含着丰富的地层信息,t-SNE算法能够发现数据的隐藏模... 本文提出了一种基于无监督学习和随钻测试技术对地层风化程度进行预测的方法。随钻测试技术提供了一种对地层进行实时评估的手段,且能够反映地层的连续变化。这些多维度的钻进参数蕴含着丰富的地层信息,t-SNE算法能够发现数据的隐藏模式和结构,适用于探索性数据分析。通过随钻测试系统,实时监测钻机运动和运行参数。对随钻测试数据进行处理后,筛选出纯钻进过程的数据,随后对这些数据进行分割和标准化处理,最后导入t-SNE算法中,计算出高维空间中数据点的相似性,并将其映射到低维空间。研究结果表明,t-SNE算法能够有效地通过钻进参数识别地层风化程度,与实际情况相吻合。这一方法为工程识别岩层风化程度提供了一种智能化的新方法和新思路。 展开更多
关键词 随钻测试 无监督学习 t-sne算法
原文传递
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
基于SSA-VMD熵和t-SNE的滚动轴承故障诊断
16
作者 金志浩 刘庆宝 刘在含 《机械工程师》 2025年第5期13-18,共6页
针对滚动轴承振动信号中故障特征提取困难、导致低诊断识别率的问题,提出一种基于麻雀优化变分模态分解(SSA-VMD)熵特征提取、t-分布随机邻嵌入(t-SNE)和粒子群优化极限学习机PSO-ELM的滚动轴承故障诊断方法。该方法采用麻雀优化技术寻... 针对滚动轴承振动信号中故障特征提取困难、导致低诊断识别率的问题,提出一种基于麻雀优化变分模态分解(SSA-VMD)熵特征提取、t-分布随机邻嵌入(t-SNE)和粒子群优化极限学习机PSO-ELM的滚动轴承故障诊断方法。该方法采用麻雀优化技术寻找最优参数组合[k,α],对滚动轴承振动信号进行VMD分解,获取K个本征模态分量,计算每个分量与原始信号的相关度并选择相关性较高的几个分量,计算其熵值构建特征向量,利用t-SNE算法对特征向量进行降维可视化处理,最后用PSO-ELM方法进行故障识别。试验表明,该方法对滚动轴承的故障诊断准确率达到100%,具有较高的准确性,在与其他降维方法的比较中,该方法表现出更好的性能,能够清晰明确地区分不同的故障类别,具有广泛的应用潜力。 展开更多
关键词 麻雀算法 变分模态分解 熵特征 t-分布随机邻嵌入 模态分量
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
17
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
18
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
19
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
20
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部