针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模...针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模糊C均值聚类算法进行前件辨识,并利用奇异值分解(singular value decomposition, SVD)算法进行后件辨识,所建立模型的有效性通过拟合度仿真加以验证。随后,在所建立的T-S模糊模型的基础上结合预测控制方法对PLZT驱动器的光致应变位移进行闭环控制,并对该算法进行仿真验证。仿真结果显示,在PLZT驱动器微位移的控制中,该文控制算法减小了基于ON-OFF控制策略下的抖振,且具有更好的控制效果。展开更多
Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used...Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers.展开更多
文摘针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模糊C均值聚类算法进行前件辨识,并利用奇异值分解(singular value decomposition, SVD)算法进行后件辨识,所建立模型的有效性通过拟合度仿真加以验证。随后,在所建立的T-S模糊模型的基础上结合预测控制方法对PLZT驱动器的光致应变位移进行闭环控制,并对该算法进行仿真验证。仿真结果显示,在PLZT驱动器微位移的控制中,该文控制算法减小了基于ON-OFF控制策略下的抖振,且具有更好的控制效果。
文摘Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers.