期刊文献+
共找到702篇文章
< 1 2 36 >
每页显示 20 50 100
t/k-fault diagnosis algorithm of n-dimensional hypercube network based on the MM*model 被引量:4
1
作者 LIANG Jiarong ZHOU Ning YUN Long 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期216-222,共7页
Compared with accurate diagnosis, the system’s selfdiagnosing capability can be greatly increased through the t/kdiagnosis strategy at most k vertexes to be mistakenly identified as faulty under the comparison model,... Compared with accurate diagnosis, the system’s selfdiagnosing capability can be greatly increased through the t/kdiagnosis strategy at most k vertexes to be mistakenly identified as faulty under the comparison model, where k is typically a small number. Based on the Preparata, Metze, and Chien(PMC)model, the n-dimensional hypercube network is proved to be t/kdiagnosable. In this paper, based on the Maeng and Malek(MM)*model, a novel t/k-fault diagnosis(1≤k≤4) algorithm of ndimensional hypercube, called t/k-MM*-DIAG, is proposed to isolate all faulty processors within the set of nodes, among which the number of fault-free nodes identified wrongly as faulty is at most k. The time complexity in our algorithm is only O(2~n n~2). 展开更多
关键词 hypercube network t/k-diagnosis algorithm multiprocessor systems the Maeng and Malek(MM)* model Preparata Metze and Chien(PMC)
在线阅读 下载PDF
融合组织P系统的自适应t分布蜣螂算法 被引量:2
2
作者 许家昌 江琳 苏树智 《计算机工程与应用》 北大核心 2025年第4期99-113,共15页
针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算法(adaptive t-distribution DBO with tissue-like membrane,MC-TDBO)。设计... 针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算法(adaptive t-distribution DBO with tissue-like membrane,MC-TDBO)。设计自适应惯性因子改变繁育蜣螂和小偷蜣螂的步长,动态调节蜣螂个体的探索幅度,协调并优化算法的全局搜索和局部开发能力;引入鲸鱼算法改进觅食行为,促使种群向最优位置靠近,提高算法的计算精度;结合成功率和自适应t分布,提升算法跳出局部最优的能力;引入组织P系统与改进后的DBO算法结合,增强算法收敛效率。采用14个基准函数进行仿真测试,实验结果表明,MC-TDBO算法和原始DBO算法等四种算法相比,寻优速度、求解精度和稳定性均得到了显著提升。将MC-TDBO算法在阈值分割中进行应用测试,进一步验证其有效性。 展开更多
关键词 组织P系统 蜣螂算法 自适应t分布 动态惯性权重
在线阅读 下载PDF
基于自适应t分布的改进麻雀搜索算法及其应用 被引量:1
3
作者 赵小强 顾鹏 《兰州理工大学学报》 北大核心 2025年第2期78-87,共10页
针对原始麻雀搜索算法全局搜索能力差、局部开发能力弱、易陷入局部最优等问题,提出一种基于自适应t分布的麻雀搜索算法(ATSSA).首先,通过Tent混沌映射初始化种群,增加初始种群的多样性;其次,利用自适应t分布变异算子对个体位置进行扰动... 针对原始麻雀搜索算法全局搜索能力差、局部开发能力弱、易陷入局部最优等问题,提出一种基于自适应t分布的麻雀搜索算法(ATSSA).首先,通过Tent混沌映射初始化种群,增加初始种群的多样性;其次,利用自适应t分布变异算子对个体位置进行扰动,提高算法的全局搜索能力,同时结合动态选择概率来调节引入的t分布变异算子,平衡算法的全局搜索能力;最后,融合精英反向学习策略,在产生最优解的位置进行扰动,产生新解,促使算法跳出局部最优.仿真实验利用10个基准测试函数进行测试,结果表明ATSSA相较于SSA具有更好的寻优能力.将改进后的算法与深度极限学习机构建预测模型,选用辛烷值数据集进行实验,模型预测精度从87.31%提高到99.32%,验证了改进后的算法具有良好的工程应用前景. 展开更多
关键词 麻雀搜索算法 tent混沌映射 自适应t分布 动态选择策略 精英反向学习
在线阅读 下载PDF
惩罚矩阵T混合模型及其在省域经济分类中的应用
4
作者 李泽安 汪钱荣 赵为华 《统计与决策》 北大核心 2025年第1期41-46,共6页
为充分考虑矩阵数据的特性和数据内部的关联性,文章基于矩阵T分布建立矩阵T混合模型及其惩罚模型来研究聚类问题。在矩阵T混合模型的似然函数上对均值矩阵分量施加自适应核范数低秩惩罚,应用ECM算法提出惩罚似然估计算法,同时提出了一... 为充分考虑矩阵数据的特性和数据内部的关联性,文章基于矩阵T分布建立矩阵T混合模型及其惩罚模型来研究聚类问题。在矩阵T混合模型的似然函数上对均值矩阵分量施加自适应核范数低秩惩罚,应用ECM算法提出惩罚似然估计算法,同时提出了一种改进的BIC模型选择准则来选择最优的混合模型数量和调节参数,进而通过自适应核范数阈值自动实现低秩估计,实现准确聚类。最后,通过数值模拟研究及与已有方法的对比验证了该方法的有用性,且将所建立的惩罚混合模型应用于中国省域经济发展水平划分研究,得到了比较准确的聚类结果。 展开更多
关键词 矩阵t分布 混合模型 自适应核范数 ECM算法 奇异值阈值
在线阅读 下载PDF
基于SSA-VMD熵和t-SNE的滚动轴承故障诊断
5
作者 金志浩 刘庆宝 刘在含 《机械工程师》 2025年第5期13-18,共6页
针对滚动轴承振动信号中故障特征提取困难、导致低诊断识别率的问题,提出一种基于麻雀优化变分模态分解(SSA-VMD)熵特征提取、t-分布随机邻嵌入(t-SNE)和粒子群优化极限学习机PSO-ELM的滚动轴承故障诊断方法。该方法采用麻雀优化技术寻... 针对滚动轴承振动信号中故障特征提取困难、导致低诊断识别率的问题,提出一种基于麻雀优化变分模态分解(SSA-VMD)熵特征提取、t-分布随机邻嵌入(t-SNE)和粒子群优化极限学习机PSO-ELM的滚动轴承故障诊断方法。该方法采用麻雀优化技术寻找最优参数组合[k,α],对滚动轴承振动信号进行VMD分解,获取K个本征模态分量,计算每个分量与原始信号的相关度并选择相关性较高的几个分量,计算其熵值构建特征向量,利用t-SNE算法对特征向量进行降维可视化处理,最后用PSO-ELM方法进行故障识别。试验表明,该方法对滚动轴承的故障诊断准确率达到100%,具有较高的准确性,在与其他降维方法的比较中,该方法表现出更好的性能,能够清晰明确地区分不同的故障类别,具有广泛的应用潜力。 展开更多
关键词 麻雀算法 变分模态分解 熵特征 t-分布随机邻嵌入 模态分量
在线阅读 下载PDF
An Integrated Use of Advanced T2 Statistics and Neural Network and Genetic Algorithm in Monitoring Process Disturbance 被引量:1
6
作者 Xiuhong WANG 《Journal of Software Engineering and Applications》 2009年第5期335-343,共9页
Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of O... Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of Opportunity” and autocorrelation. In this paper, advanced T2 statistics model and neural networks scheme are combined to solve the above problems: use T2 statistics technique to solve the problem of autocorrelation;adopt neural networks technique to solve the problem of “Window of Opportunity” and identification of disturbance causes. At the same time, regarding the shortcoming of neural network technique that its algorithm has a low speed of convergence and it is usually plunged into local optimum easily. Genetic algorithm was proposed to train samples in this paper. Results of the simulation ex-periments show that this method can detect the process disturbance quickly and accurately as well as identify the dis-turbance type. 展开更多
关键词 t2 StAtIStICS Neural Networks Statistical PROCESS CONtROL Engineering PROCESS CONtROL GENEtIC algorithm
暂未订购
Simple Insulin Dose Adjustment Using 3-3-1 Algorithm in Japanese Patients with Type 2 Diabetes: Start Kanazawa Study (Self-Titration Aggressive Algorithm with Glargine Trial) 被引量:1
7
作者 Kenji D. Furukawa Naoto Yamaaki +2 位作者 Aya Fujimoto Kiminori Ohyama Hiroaki Muramoto 《Journal of Diabetes Mellitus》 2016年第3期197-203,共7页
We implemented a 3-3-1 algorithm in order to provide safe and simple self-titration in patients who newly initiated BOT as well as who were already on BOT and evaluated its utility in clinical setting. A total of 46 p... We implemented a 3-3-1 algorithm in order to provide safe and simple self-titration in patients who newly initiated BOT as well as who were already on BOT and evaluated its utility in clinical setting. A total of 46 patients, 21 patients in the newly-initiated group and 25 patients in the existing BOT group performed dose adjustment using 3-3-1 algorithm. HbA1c was significantly improved 4 weeks after the initiation from 8.5% ± 1.2% at baseline to 7.3% ± 0.7% at the final evaluation (p  0.01, vs. Baseline). The average daily insulin units increased throughout the study period from 10.1 ± 6.7 at baseline to 14.6 ± 8.9 units at the final evaluation. Weight didn’t significantly change throughout the study (p = 0.12). The incidents of hypoglycemia were 0.8/month during the insulin dose self-adjustment period and 0.4/month during the follow-up period. The 3-3-1 algorithm using insulin glargine provided a safe and simple dose adjustment and demonstrated its utility in patients who were newly introduced to insulin treatment as well as who were already on BOT. 展开更多
关键词 GLARGINE Self-titration BOt t2DM INSULIN 3-3-1 algorithm
暂未订购
Stable Perturbed Algorithms for a New Class of Generalized Nonlinear Implicit Quasi Variational Inclusions in Banach Spaces 被引量:2
8
作者 Salahuddin Salahuddin Mohammad Kalimuddin Ahmad 《Advances in Pure Mathematics》 2012年第3期139-148,共10页
In this work, a new class of variational inclusion involving T-accretive operators in Banach spaces is introduced and studied. New iterative algorithms for stability for their class of variational inclusions and its c... In this work, a new class of variational inclusion involving T-accretive operators in Banach spaces is introduced and studied. New iterative algorithms for stability for their class of variational inclusions and its convergence results are established. 展开更多
关键词 t-Accretive Operators VARIAtIONAL INCLUSIONS Iterative algorithms Stability Conditions Convergence Strong Accretivity BANACH Spaces
在线阅读 下载PDF
New Accuracy Evaluation Index for Track Fusion Algorithms
9
作者 LI Yuewu HU Jianwang +1 位作者 JI Bing CHEN Zizhao 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第1期97-105,共9页
When evaluating the track fusion algorithm,common accuracy indexes may fail to evaluate the fusion accuracy correctly when the state estimation and the real target cannot be one-to-one,and fail to effectively distingu... When evaluating the track fusion algorithm,common accuracy indexes may fail to evaluate the fusion accuracy correctly when the state estimation and the real target cannot be one-to-one,and fail to effectively distinguish the performance of the algorithm when the state estimation is similar.Therefore,it is necessary to construct a high-resolution evaluation index,which can evaluate the track fusion algorithm more accurately,reasonably and comprehensively.Firstly,the advant ages and disadvantages of the optimal subpattern assignment(OSPA)dis tance as the accuracy index to evaluate the track fusion algorithm are analyzed.Then,its deficiencies are improved by using the Hellinger distance instead of the original Euclidean distance,and the distance is index transformed.Finally,a new evaluation index for track fusion algorithms is proposed,which is the OSPA distance based on Hellinger distance and index transformation.The simulation results show that the new index can not only correctly evaluate the fusion precision,but also consider the state uncertainty,making that can evaluate the track fusion algorithm more sensitively,and effectively solves the sensitivity of the index to the cut-off parameter c through index transformation. 展开更多
关键词 tRACK FUSION algorithm evaluation INDEX optimal subpat tern assignmen t dist ance Hellinger dist ance INDEX tRANSFORMAtION
原文传递
Novel Power-Aware Optimization Methodology and Efficient Task Scheduling Algorithm
10
作者 K.Sathis Kumar K.Paramasivam 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期209-224,共16页
The performance of central processing units(CPUs)can be enhanced by integrating multiple cores into a single chip.Cpu performance can be improved by allocating the tasks using intelligent strategy.If Small tasks wait ... The performance of central processing units(CPUs)can be enhanced by integrating multiple cores into a single chip.Cpu performance can be improved by allocating the tasks using intelligent strategy.If Small tasks wait for long time or executes for long time,then CPU consumes more power.Thus,the amount of power consumed by CPUs can be reduced without increasing the frequency.Lines are used to connect cores,which are organized together to form a network called network on chips(NOCs).NOCs are mainly used in the design of processors.However,its performance can still be enhanced by reducing power consumption.The main problem lies with task scheduling,which fully utilizes the network.Here,we propose a novel randomfit algorithm for NOCs based on power-aware optimization.In this algorithm,tasks that are under the same application are mapped to the neighborhoods of the same application,whereas tasks belonging to different applications are mapped to the processor cores on the basis of a series of steps.This scheduling process is performed during the run time.Experiment results show that the proposed randomfit algorithm reduces the amount of power consumed and increases system performance based on effective scheduling. 展开更多
关键词 Randomfit algorithm network on chips processor cores power-aware optimization
在线阅读 下载PDF
Design of Sharp 2D Multiplier-Less Circularly Symmetric FIR Filter Using Harmony Search Algorithm and Frequency Transformation
11
作者 Manju Manuel Elizabeth Elias 《Journal of Signal and Information Processing》 2012年第3期344-351,共8页
In this paper, we present a novel and efficient method for the design of a sharp, two dimensional (2D) wideband, circularly symmetric, FIR filter. First of all, a sharp one dimensional (1D) infinite precision FIR filt... In this paper, we present a novel and efficient method for the design of a sharp, two dimensional (2D) wideband, circularly symmetric, FIR filter. First of all, a sharp one dimensional (1D) infinite precision FIR filter is designed using the Frequency Response Masking (FRM) technique. This filter is converted into a multiplier-less filter by representing it in the Canonic Signed Digit (CSD) space. The design of the FRM filter in the CSD space calls for the use of a discrete optimization technique. To this end, a new optimization approach is proposed using a modified Harmony Search Algorithm (HSA). HSA is modified in such a way that, in every exploitation and exploration phase, the candidate solutions turns out to be integers. The 1D FRM multiplier-less filter, is in turn transformed to the 2D equivalent using the recently proposed multiplier-less transformations namely, T1 and T2. These transformations are successful in generating circular contours even for wideband filters. Since multipliers are the most power consuming elements in a 2D filter, the multiplier-less realization calls for reduced power consumption as well as computation time. Significant reduction in the computational complexity and computation time are the highlights of our proposed design technique. Besides, the proposed discrete optimization using modified HSA can be used to solve optimization problems in other engineering disciplines, where the search space consists of integers. 展开更多
关键词 two Dimensional Filter Frequency Response MASKING HARMONY Search algorithm t1 and t2 transformations Canonic SIGNED DIGIt Representation
在线阅读 下载PDF
An algorithm for multi-exponential inversion of T_2 spectrum in nuclear magnetic resonance
12
作者 HAN Chunjiang REN Li WANG Zhuwen 《Global Geology》 2014年第2期105-109,共5页
NMR logging can provide the permeability parameter and abundant stratigraphical information such as total porosity,oil,gas and water saturation,oil viscosity,etc. And these physical parameters can be obtained by T2 sp... NMR logging can provide the permeability parameter and abundant stratigraphical information such as total porosity,oil,gas and water saturation,oil viscosity,etc. And these physical parameters can be obtained by T2 spectrum inversion. NMR inversion is an important part in logging interpretation. The authors describe a multi-exponential inversion algorithm,solid iteration redress technique( SIRT),and apply the algorithm in real data and compare the results with those based on singular value decomposition( SVD). It shows that SIRT algorithm is easier to be understood and implemented,and the time spent in SIRT is much shorter than that of SVD algorithm. And the non-negative property of T2 spectrum is much easier to be implemented. It can match the results based on SVD very well. SIRT algorithm can be used in T2 spectrum inversion for NMR analysis. 展开更多
关键词 NMR logging t2spectrum SIRt algorithm INVERSION
在线阅读 下载PDF
T-S norm FNN controller based on hybrid learning algorithm
13
作者 郭冰洁 李岳明 万磊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期27-32,共6页
Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used... Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers. 展开更多
关键词 t-S NORM fuzzy neural network UNDERWAtER vehicles IMMUNE GENEtIC algorithm Hybrid learning algorithm
在线阅读 下载PDF
(n,k)-排列图的t/s诊断度与t/s诊断算法研究
14
作者 张世豪 冷明 《计算机科学》 北大核心 2025年第S1期893-901,共9页
鉴于多处理器系统中日益严峻的故障风险挑战,特别是在超级计算机领域,如何有效提升系统的可靠性和容错能力成为了亟待解决的关键问题。(n,k)-排列图作为一种新型的互连网络拓扑结构应运而生,它是基于星图网络的推广和变形。它在保留星... 鉴于多处理器系统中日益严峻的故障风险挑战,特别是在超级计算机领域,如何有效提升系统的可靠性和容错能力成为了亟待解决的关键问题。(n,k)-排列图作为一种新型的互连网络拓扑结构应运而生,它是基于星图网络的推广和变形。它在保留星图网络原有的对称性和容错性的同时,具有更好的灵活性。目前对于(n,k)-排列图的可靠性研究尚不全面。基于此,展开了对(n,k)-排列图的t/s和t/s诊断算法研究。首先,给出了(n,k)-排列图的系列拓扑性质;然后,度量了(n,k)-排列图在PMC(Preparata,Metze,Chien)模型下的t/s诊断度;最后,设计了一个时间复杂度为O(N log2N)的快速诊断算法,用于识别(n,k)-排列图的所有故障结点。(n,k)-排列图的t/s诊断度被确定,进一步完善了(n,k)-排列图网络的可靠性指标,为其在应用和推广中的可靠性提供了重要的依据。 展开更多
关键词 可靠性 t/s诊断度 t/s诊断算法 (n k)-排列图 PMC模型
在线阅读 下载PDF
改进搜索机制的自适应t分布麻雀搜索算法
15
作者 高思慧 吴克晴 何斌 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第2期247-256,共10页
针对麻雀搜索算法在寻优过程中容易陷入局部最优、依赖种群初始化等缺陷,提出一种改进搜索机制的自适应t分布麻雀搜索算法(ATSSA)。引入Bernoulli混沌映射来获得高质量的初始种群;受鱼鹰优化算法中鱼鹰捕鱼方式的启发,改进发现者搜索机... 针对麻雀搜索算法在寻优过程中容易陷入局部最优、依赖种群初始化等缺陷,提出一种改进搜索机制的自适应t分布麻雀搜索算法(ATSSA)。引入Bernoulli混沌映射来获得高质量的初始种群;受鱼鹰优化算法中鱼鹰捕鱼方式的启发,改进发现者搜索机制,使发现者在寻优过程中表现出更大的灵活性,从而增强算法的勘探能力;根据概率引入自适应t分布算子进行扰动,以提升算法的收敛速度;采用黄金正弦策略来改变警觉者位置,提高算法的收敛能力。在14个基准函数上进行测试并进行Wilcoxon秩和检验来验证算法的性能。研究结果表明,ATSSA具有良好的寻优效果和鲁棒性。 展开更多
关键词 麻雀搜索算法 Bernoulli混沌映射 鱼鹰优化算法 自适应t分布 黄金正弦算法
原文传递
A novel conditional diagnosability algorithm under the PMC model
16
作者 郭晨 Liang Jiarong +1 位作者 Leng Ming Peng Shuo 《High Technology Letters》 EI CAS 2017年第4期384-389,共6页
Conditionally t-diagnosable and t-diagnosable are important in system level diagnosis. Therefore,it is valuable to identify whether the system is conditionally t-diagnosable or t-diagnosable and derive the correspondi... Conditionally t-diagnosable and t-diagnosable are important in system level diagnosis. Therefore,it is valuable to identify whether the system is conditionally t-diagnosable or t-diagnosable and derive the corresponding conditional diagnosability and diagnosability. In the paper,distinguishable measures of pairs of distinct faulty sets with a new perspective on establishing functions are focused.Applying distinguishable function and decision function,it is determined whether a system is conditionally t-diagnosable( or t-diagnosable) or not under the PMC( Preparata,Metze,and Chien)model directly. Based on the decision function,a novel conditional diagnosability algorithm under the PMC model is introduced which can calculate conditional diagnosability rapidly. 展开更多
关键词 the PMC(Preparata Metze and Chien) model conditionally t-diagnosable conditional diagnosability conditional diagnosability algorithm
在线阅读 下载PDF
基于t分布扰动因子和随机差分变异算子的改进霜冰优化算法
17
作者 王佩怡 陈岩 《科学技术与工程》 北大核心 2025年第31期13210-13226,共17页
针对霜冰优化算法的搜索策略单一化,算法后期搜索开发能力有限,导致算法稳定性不足,提出了一种基于t分布扰动因子和随机差分变异算子的改进策略。在霜冰优化算法的硬刺穿透机制的基础上,引入了t分布扰动因子,局部范围内扩大算法的搜索范... 针对霜冰优化算法的搜索策略单一化,算法后期搜索开发能力有限,导致算法稳定性不足,提出了一种基于t分布扰动因子和随机差分变异算子的改进策略。在霜冰优化算法的硬刺穿透机制的基础上,引入了t分布扰动因子,局部范围内扩大算法的搜索范围,试图在最优位置周围探索更优的位置。在算法迭代完成后,利用随机差分变异算子对最新更新的粒子位置进行突变,得到更优的粒子。通过测试集CEC2017和CEC2022,与同类算法进行对比实验,发现改进后的霜冰优化算法搜索能力更强,稳定性更好。同时进行了Wilcoxon符号秩检验,验证了算法的显著性差异。利用经典测试函数,从最优值迭代曲线、平均适应度值、第一维度变化趋势和种群历史位置4个维度展开,对算法特征进行了分析。最后应用改进后的霜冰优化算法优化PID(proportional integral derivative)参数进行仿真实验,验证了算法的有效性和适用性。 展开更多
关键词 霜冰优化算法 t分布扰动因子 随机差分变异算子 PID参数优化
在线阅读 下载PDF
数据中心机房温度T-S模糊预测模型
18
作者 魏东 吴淦 孔明 《控制工程》 北大核心 2025年第7期1163-1176,共14页
数据中心空调末端系统预测控制的基础是对机柜入口温度的多步预测。为了改善预测模型的预测精度和可移植性,提出一种数据中心机房温度非线性Takagi-Sugeno(T-S)模糊模型构建方法。首先,采用计算流体动力学(computational fluid dynamics... 数据中心空调末端系统预测控制的基础是对机柜入口温度的多步预测。为了改善预测模型的预测精度和可移植性,提出一种数据中心机房温度非线性Takagi-Sugeno(T-S)模糊模型构建方法。首先,采用计算流体动力学(computational fluid dynamics,CFD)数值模拟方法建立机房CFD模型,并设计了数据采集策略,以捕捉系统的完整动态特性;然后,为了解决模糊C-均值聚类算法易陷入局部最优的问题,采用改进天牛须搜索算法对其进行优化,实现了T-S模糊模型的前件结构辨识;最后,采用容积卡尔曼滤波算法进行T-S模糊模型的后件参数辨识和在线修正。实验结果表明,与传统T-S模糊模型相比,此方法构建的T-S模糊模型具有更高的计算效率和预测精度,通过后件参数的更新可满足模型可移植的要求。 展开更多
关键词 数据中心 CFD t-S模糊模型 天牛须搜索算法 容积卡尔曼滤波
原文传递
Estimation of Distribution Algorithm with Multivariate <i>T</i>-Copulas for Multi-Objective Optimization
19
作者 Ying Gao Lingxi Peng +2 位作者 Fufang Li Miao Liu Xiao Hu 《Intelligent Control and Automation》 2013年第1期63-69,共7页
Estimation of distribution algorithms are a class of evolutionary optimization algorithms based on probability distribution model. In this article, a Pareto-based multi-objective estimation of distribution algorithm w... Estimation of distribution algorithms are a class of evolutionary optimization algorithms based on probability distribution model. In this article, a Pareto-based multi-objective estimation of distribution algorithm with multivariate T-copulas is proposed. The algorithm employs Pareto-based approach and multivariate T-copulas to construct probability distribution model. To estimate joint distribution of the selected solutions, the correlation matrix of T-copula is firstly estimated by estimating Kendall’s tau and using the relationship of Kendall’s tau and correlation matrix. After the correlation matrix is estimated, the degree of freedom of T-copula is estimated by using the maximum likelihood method. Afterwards, the Monte Carte simulation is used to generate new individuals. An archive with maximum capacity is used to maintain the non-dominated solutions. The Pareto optimal solutions are selected from the archive on the basis of the diversity of the solutions, and the crowding-distance measure is used for the diversity measurement. The archive gets updated with the inclusion of the non-dominated solutions from the combined population and current archive, and the archive which exceeds the maximum capacity is cut using the diversity consideration. The proposed algorithm is applied to some well-known benchmark. The relative experimental results show that the algorithm has better performance and is effective. 展开更多
关键词 Estimation of Distribution algorithm Pareto-Based Approach t-Copulas Multi-Objective Optimization
暂未订购
基于tFLO-SVMD-LSSVM及精细复合多尺度模糊散布熵的隔离开关故障诊断方法 被引量:1
20
作者 葛轩豪 马宏忠 +3 位作者 张驰 董媛 徐睿涵 胡国栋 《电机与控制应用》 2025年第4期376-388,共13页
【目的】目前,隔离开关已被广泛应用于电网中,然而对其故障诊断的研究相比于变压器、断路器等设备却较少。通过隔离开关运行时的振动信号来准确识别其故障类型对于电网的正常运行和工作人员的人身安全具有重要意义。【方法】本文采用了... 【目的】目前,隔离开关已被广泛应用于电网中,然而对其故障诊断的研究相比于变压器、断路器等设备却较少。通过隔离开关运行时的振动信号来准确识别其故障类型对于电网的正常运行和工作人员的人身安全具有重要意义。【方法】本文采用了自适应t分布扰动策略来改进伞蜥优化(FLO)算法,得到改进后的融合自适应t分布扰动的伞蜥优化(tFLO)算法,进而对连续变分模态分解(SVMD)和最小二乘支持向量机(LSSVM)的参数寻优,以实现对隔离开关故障的识别。首先,引入自适应t分布扰动策略改进FLO算法;然后,利用tFLO-SVMD对试验数据进行分解得到最佳的模态分量;计算模态分量的精细复合多尺度模糊散布熵(RCMFDE)得到高维特征矩阵;最后,使用tFLO-LSSVM算法将核主成分分析法(KPCA)对高维矩阵降维后的多组低维特征值矩阵进行故障的分类。【结果】本文针对某220 kV高压隔离开关提出的基于tFLO-SVMD-LSSVM-RCMFDE的故障诊断方法的试验准确率达97.92%,能有效识别隔离开关故障类型。【结论】在传统VMD方法分解的本征模态函数(IMF)分量中存在计算速度慢、模态中心鲁棒性差及需要额外优化模态个数k等问题,SVMD算法能够很好地解决这些问题且分解地更细致。同时,熵值计算能有效量化时间序列的复杂性和不确定性,模糊散布熵(FDE)具有计算时间短,抗干扰强的优点。而RCMFDE相比于FDE稳定性更好,对特征地反映更加全面。tFLO-SVMD与RCMFDE结合能够有效地区分隔离开关不同类型故障的振动信号。综上,本文证明基于tFLO-SVMD-LSSVM-RCMFDE分类方法能有效识别隔离开关故障,具有较高的识别精度。 展开更多
关键词 隔离开关 连续变分模态分解 伞蜥优化算法 自适应t分布扰动策略 模糊散布熵 核主成分分析 最小二乘支持向量机 故障诊断
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部