Near Field Communication(NFC)and Radio Frequency Identification(RFID)technologies offer wireless data transmission and energy supply for flexible wearable and implantable sensing systems.By eliminating bulky batteries...Near Field Communication(NFC)and Radio Frequency Identification(RFID)technologies offer wireless data transmission and energy supply for flexible wearable and implantable sensing systems.By eliminating bulky batteries or external wiring,these technologies significantly advance personalized medicine through wearable and implantable systems with reduced size,increased flexibility,and improved mechanical adaptability to the human body.This multidisciplinary research area encompasses the fundamental mechanisms of antenna theory,simulation&design,micro/nano-fabrication,and their biomedical applications.This review provides an overview of emerging wireless,personalized/decentralized biomedical devices focusing on NFC/RFID antennas design mechanisms,flexible NFC/RFID-based physical,chemical,and biosensors,as well as drug delivery implants.Moreover,challenges and future directions regarding flexible NFC/RFID-based systems are provided.Advancing this field will require collaborative efforts from researchers in antenna design,materials science,biology,and medical care,driving the development of NFC/RFID in biomedical applications.展开更多
基金the financial support from the National Natural Science Foundation of China(62235008)Natural Science Foundation for Excellent Young Scholars(62322108)+3 种基金National Key R&D Program of China under Grant(2021YFB3601200)Natural Science Foundation for Young Scholars(62201286,62301283,22405131)the Program of Jiangsu Specially-Appointed Professor,Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB587)Nanjing U35 Program,Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(NY222099).
文摘Near Field Communication(NFC)and Radio Frequency Identification(RFID)technologies offer wireless data transmission and energy supply for flexible wearable and implantable sensing systems.By eliminating bulky batteries or external wiring,these technologies significantly advance personalized medicine through wearable and implantable systems with reduced size,increased flexibility,and improved mechanical adaptability to the human body.This multidisciplinary research area encompasses the fundamental mechanisms of antenna theory,simulation&design,micro/nano-fabrication,and their biomedical applications.This review provides an overview of emerging wireless,personalized/decentralized biomedical devices focusing on NFC/RFID antennas design mechanisms,flexible NFC/RFID-based physical,chemical,and biosensors,as well as drug delivery implants.Moreover,challenges and future directions regarding flexible NFC/RFID-based systems are provided.Advancing this field will require collaborative efforts from researchers in antenna design,materials science,biology,and medical care,driving the development of NFC/RFID in biomedical applications.