Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitr...Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.展开更多
In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by ...In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.展开更多
The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components...The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.展开更多
In this paper,we study the uniqueness of positive solutions to the following semilinear equations{-Δu=λ|x|^(α)ue^(u^(2)),in B_(1),u=0,onδB_(1)ueu2;in B_(1);u=0;on@B_(1);whereλ>0,α>-2;B_(1)denotes the unit ...In this paper,we study the uniqueness of positive solutions to the following semilinear equations{-Δu=λ|x|^(α)ue^(u^(2)),in B_(1),u=0,onδB_(1)ueu2;in B_(1);u=0;on@B_(1);whereλ>0,α>-2;B_(1)denotes the unit disk in R^(2):By delicate and relatively complicated computation of radial solutions to the above equation and the asymptotic expansion of solutions near the boundary of B_(1),the uniqueness of positive solutions is obtained.The results of this paper extend the uniqueness result for the semilinear equation with critical exponential growth in CHEN et al.(2022)to the case that includes a Henon term.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can...The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generaliz...Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.展开更多
Dear Editor,This letter presents a class of saturated sliding mode control (SMC)strategy for linear systems subject to impulsive disturbance and input saturation. To ensure the feasibility of proposed SMC under satura...Dear Editor,This letter presents a class of saturated sliding mode control (SMC)strategy for linear systems subject to impulsive disturbance and input saturation. To ensure the feasibility of proposed SMC under saturation, a relationship is established among attraction domain, saturation structure and control gain.展开更多
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in ...This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.展开更多
This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is consid...This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.展开更多
The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average d...The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the ...The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.展开更多
This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach...This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstabl...A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.展开更多
Structures of monotone systems and cold standby systems with exponen-tial life distributions and dependent components are studied. It is shown that a mono-tone system composed of components with multivariate HNBUE lif...Structures of monotone systems and cold standby systems with exponen-tial life distributions and dependent components are studied. It is shown that a mono-tone system composed of components with multivariate HNBUE life distributions isessentially a series system composed of components with multivariate exponential lifedistributions. Also, it is proved that for cold standby systems composed of componentswith multivariate NBU life distributions, all but oue of the components are degenerateat zero while the remaining one is exponential. In addition, several equivalent char-acterizations of multivariate exponential distribution are provided in the multivariateHNBUE life distribution class which include many existing results as special cases.展开更多
This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constan...This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.展开更多
In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about samplin...In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.展开更多
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple li...The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.展开更多
文摘Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.
文摘In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.
文摘The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.
基金Supported by the Natural Science Foundation of China(12571122,12061010)。
文摘In this paper,we study the uniqueness of positive solutions to the following semilinear equations{-Δu=λ|x|^(α)ue^(u^(2)),in B_(1),u=0,onδB_(1)ueu2;in B_(1);u=0;on@B_(1);whereλ>0,α>-2;B_(1)denotes the unit disk in R^(2):By delicate and relatively complicated computation of radial solutions to the above equation and the asymptotic expansion of solutions near the boundary of B_(1),the uniqueness of positive solutions is obtained.The results of this paper extend the uniqueness result for the semilinear equation with critical exponential growth in CHEN et al.(2022)to the case that includes a Henon term.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金Hongguang Wu,Both authors contributed equally to this work and share first authorshipLing Dong,Both authors contributed equally to this work and share first authorship。
文摘The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
基金Project Supported by the Natural Science Foundation of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.
基金supported by the National Natural Science Foundation of China(62173215)the Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24)
文摘Dear Editor,This letter presents a class of saturated sliding mode control (SMC)strategy for linear systems subject to impulsive disturbance and input saturation. To ensure the feasibility of proposed SMC under saturation, a relationship is established among attraction domain, saturation structure and control gain.
基金supported by the National Natural Science Foundation of China(61673198)the Provincial Natural Science Foundation of Liaoning Province(20180550473)
文摘This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.
基金This work was supported by the National Natural Science Foundation of China (No.60574013, 60274009), and the Natural Science Fundation ofLiaoning Province (No.20032020).
文摘This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.
基金the National Natural Science Foundation of China (60674027, 60574007)Doctoral Foundation of Education Ministry of China (20050446001).
文摘The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.
基金The National Natural Science Foundation of China(No.61273119,61104068,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)
文摘The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.
文摘This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
基金the National Natural Science Foundation of China(No.60674027)China Postdoctoral Science Foundation(No.20070410336)the Postdoctor Foundation of Jiangsu Province(No.0602042B).
文摘A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.
基金This work is supported by the Natural Science Foundation of the Jiangsu Provincial Education Commission.
文摘Structures of monotone systems and cold standby systems with exponen-tial life distributions and dependent components are studied. It is shown that a mono-tone system composed of components with multivariate HNBUE life distributions isessentially a series system composed of components with multivariate exponential lifedistributions. Also, it is proved that for cold standby systems composed of componentswith multivariate NBU life distributions, all but oue of the components are degenerateat zero while the remaining one is exponential. In addition, several equivalent char-acterizations of multivariate exponential distribution are provided in the multivariateHNBUE life distribution class which include many existing results as special cases.
基金supported by the National Natural Science Foundation of China (No.60574001)Program for New Century Excellent Talents in University (No.050485)Program for Innovative Research Team of Jiangnan University
文摘This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
文摘In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904046, 60972164, 60974071, and 60804006)the Special Fund for Basic Scientific Research of Central Colleges, Northeastern University, China (Grant No. 090604005)+2 种基金the Science and Technology Program of Shenyang (Grant No. F11-264-1-70)the Program for Liaoning Excellent Talents in University (Grant No. LJQ2011137)the Program for Liaoning Innovative Research Team in University (Grant No. LT2011019)
文摘The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.