A transformation of the electron states—say those enclosed in a potential box—into the de Broglie waves done in the paper, enabled us to calculate the energy change between two quantum levels as a function of the sp...A transformation of the electron states—say those enclosed in a potential box—into the de Broglie waves done in the paper, enabled us to calculate the energy change between two quantum levels as a function of the specific heat and difference of the temperature between the states. In consequence, the energy difference and that of entropy between the levels could be examined in terms of the appropriate classical parameters. In the next step, the time interval necessary for the electron transition between the levels could be associated with the classical electrodynamical parameters like the electric resistance and capacitance connected with the temporary formation of the electric cell in course of the transition. The parameters characterizing the mechanical inertia of the electron were next used as a check of the electrodynamical formulae referring to transition.展开更多
Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mu...Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.展开更多
Safety assessment of genetically modified organisms (GMOs) is a contentious topic. Proponents of GMOs assert that GMOs are safe since the FDA’s policy of substantial equivalence considers GMOs “equivalent” to their...Safety assessment of genetically modified organisms (GMOs) is a contentious topic. Proponents of GMOs assert that GMOs are safe since the FDA’s policy of substantial equivalence considers GMOs “equivalent” to their non-GMO counterparts, and argue that genetic modification (GM) is simply an extension of a “natural” process of plant breeding, a form of “genetic modification”, though done over longer time scales. Anti-GMO activists counter that GMOs are unsafe since substantial equivalence is unscientific and outdated since it originates in the 1970s to assess safety of medical devices, which are not comparable to the complexity of biological systems, and contend that targeted GM is not plant breeding. The heart of the debate appears to be on the methodology used to determine criteria for substantial equivalence. Systems biology, which aims to understand complexity of the whole organism, as a system, rather than just studying its parts in a reductionist manner, may provide a framework to determine appropriate criteria, as it recognizes that GM, small or large, may affect emergent properties of the whole system. Herein, a promising computational systems biology method couples known perturbations on five biomolecules caused by the CP4 EPSPS GM of Glycine max L. (soybean), with an integrative model of C1 metabolism and oxidative stress (two molecular systems critical to plant function). The results predict significant accumulation of formaldehyde and concomitant depletion of glutathione in the GMO, suggesting how a “small” and single GM creates “large” and systemic perturbations to molecular systems equilibria. Regulatory agencies, currently reviewing rules for GMO safety, may wish to adopt a systems biology approach using a combination of in silico, computational methods used herein, and subsequent targeted experimental in vitro and in vivo designs, to develop a systems understanding of “equivalence” using biomarkers, such as formaldehyde and glutathione, which predict metabolic disruptions, towards modernizing the safety assessment of GMOs.展开更多
The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can...The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.展开更多
A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing th...A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.展开更多
In this paper, H∞ optimal model reduction for singular fast subsystems will be inves-tigated. First, error system is established to measure the error magnitude between the original andreduced systems, and it is demon...In this paper, H∞ optimal model reduction for singular fast subsystems will be inves-tigated. First, error system is established to measure the error magnitude between the original andreduced systems, and it is demonstrated that the new feature for model reduction of singular systemsis to make H∞ norm of the error system finite and minimal. The necessary and su?cient conditionis derived for the existence of the H∞ suboptimal model reduction problem. Next, we give an exactand practicable algorithm to get the parameters of the reduced subsystems by applying the matrixtheory. Meanwhile, the reduced system may be also impulsive. The advantages of the proposedalgorithm are that it is more ?exible in a straight-forward way without much extra computation, andthe order of the reduced systems is as minimal as possible. Finally, one illustrative example is givento illustrate the e?ectiveness of the proposed model reduction approach.展开更多
Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality ...Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.展开更多
At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI)...At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI). It cannot meet high requirements for high-speed transmission of modern logging system. The development of communication technology has laid some foundation for this requirement. For this purpose, the Orthogonal Frequency Division Multiplexing (OFDM) Wireless Downhole Transmission Systems are proposed for the first time because of their high transmission rate, anti-inter-symbol-interference (ISI), and high spectral efficiency, etc. Due to non-linear power amplifier (PA) of logging systems with limited dynamic range, the drawbacks of high peak-average power ratio (PAPR) may outweigh all the potential benefits of OFDM wireless downhole transmission systems. Selective mapping (SLM) method can reduce the PAPR of OFDM logging signals without distortion. But at the receiver, the conventional SLM method needs exact bits of side information (SI) to recover the data signal. The probability of erroneous SI detection has a significant influence on the error performance of the system. And individual transmissions of SI result in the reduction of bandwidth efficiency. To restore the exact data signal, our scheme codes the SI bits by linear block codes (LBC), and is easily decoded by syndrome decoding. And then the coding SI bits are superimposed onto the logging signals to omit SI bits transmission. The theory and simulation results show that the proposed method has better performance than the conventional one. Accordingly, the OFDM wireless downhole transmission systems can tackle the high PAPR problem, and highten the transmission rate of logging signals.展开更多
In this paper, we study the existence of solutions for 2l order (n × n) cooperative systems governed by Dirichlet and Neumann problems involving hyperbolic operators with an infinite number of variables and with ...In this paper, we study the existence of solutions for 2l order (n × n) cooperative systems governed by Dirichlet and Neumann problems involving hyperbolic operators with an infinite number of variables and with variable coefficients. The necessary and sufficient conditions for optimality of the distributed control with constraints are obtained and the set of inequalities that defining the optimal control of these systems are also obtained.展开更多
Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO...Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO) communica- tion systems, this paper establishes a channel model for the mobile platform. Based on the combination of Alamouti space-time code and time hopping ultra-wide band (TH-UWB) communications, a novel repetition space-time coding (RSTC) method for mobile 2x2 free-space optical communications with pulse position modulation (PPM) is devel- oped. In particular, two decoding methods of equal gain combining (EGC) maximum likelihood detection (MLD) and correlation matrix detection (CMD) are derived. When a quasi-static fading and weak turbulence channel model are considered, simulation results show that whether the channel state information (CSI) is known or not, the coding sys- tem demonstrates more significant performance of the symbol error rate (SER) than the uncoding. In other words, transmitting diversity can be achieved while conveying the information only through the time delays of the modulated signals transmitted from different antennas. CMD has almost the same effect of signal combining with maximal ratio combining (MRC). However, when the channel correlation increases, SER performance of the coding 2×2 system de- grades significantly.展开更多
德国Wibu-Systems专业致力于软件保护,并将在CeBIT asia 4号厅C19/14展位中展示其专业的Wibu-Key和CodeMeter软件保护方案。Wibu-Systems在今年三月发布的CodeMeter ExpressCard(tm)模块标志了其在该领域的领导地位。新的ExpressCard...德国Wibu-Systems专业致力于软件保护,并将在CeBIT asia 4号厅C19/14展位中展示其专业的Wibu-Key和CodeMeter软件保护方案。Wibu-Systems在今年三月发布的CodeMeter ExpressCard(tm)模块标志了其在该领域的领导地位。新的ExpressCard技术使CodeMeter在一个小小的移动设备中提供安全的数字版权管理,并附加了10G或更大的大容量存储空间。展开更多
Objectives: To evaluate the various scoring systems, APACHE II, SOFA, SAPS II and MPM for the prediction of prognosis of the obstetric critically ill patients admitted in a well supported ICU unit. Material and method...Objectives: To evaluate the various scoring systems, APACHE II, SOFA, SAPS II and MPM for the prediction of prognosis of the obstetric critically ill patients admitted in a well supported ICU unit. Material and methods: A prospective, observational study was conducted among all the obstetric patients admitted to the ICU between October 2011 and December 2012, during a period of 15 months. The data collected were of three categories: demographic, obstetric and ICU related. Results and Analysis: The patients admitted in the postpartum period (n = 28, 53.84%) were more than the antenatal admissions (n = 24, 46.16%). 32.69% of admissions were in the third trimester. The most common mode of delivery was emergency caesarean section (n = 27/40, 67.5%). Total caesarean deliveries were 35/40 = 87.5% in ICU patients. The mortality prediction scores were calculated for 41 patients only as acid blood gas analysis was not available for the rest. Patients required ventilation—51.92%, hemodialysis—19.23%, inotropic support—38.46%, blood transfusion—50%. Analysis of the statistical data for ICU parameters has shown that hospital stay (p = 0.011) and ventilation days (p = 0.014) are significant predictors of maternal outcome. Age (p = 0.789), ICU stay (p = 0.701) and RRT (p = 0.632) are not significant. Among the obstetric ICU admissions, hypertensive disorders of pregnancy (30.76%) was the predominant cause followed by obstetric haemorrhage (23.07%). Discussion: HELLP syndrome and eclampsia (n = 4, 57%) were the major causes of maternal deaths with anaesthetic mishaps accounting for 29% (n = 2). One (14%) death was due to Eisenmenger’s syndrome. In one case of H1N1 admitted with ARDS, caesarean section was done in MICU for worsening respiratory distress. The maternal mortality in this series of cases was 7/52 = 13.46%, excluding the unavoidable cases of maternal death (3 cases brain dead at admission and one cardiac arrest in emergency room), our maternal mortality rate is 3/48 = 6.25%. The predicted mortality as measured by all scoring systems (for 41 patients) was between 17% and 30%. The observed mortality was around 17%. Hence a reduction in mortality of 40% has been achieved due to intensive care. Conclusions: Leading cause of maternal mortality was HELLP syndrome. Hypertensive disorders of pregnancy were the most common cause of admission to ICU. In this study, all the scores were equally significant in predicting maternal mortality. Amongst the interventions done for these patients mechanical ventilation seems to have an influence on the overall outcome.展开更多
We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single ...We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single quadratically stable subsystem, if a convex combination of subsystems is quadratically stable, then we propose a state-dependent switching law, based on the convex combination of subsystems, such that the entire switched linear system is quadratically stable. When the state information is not available, we extend the discussion to designing an outputdependent switching law by constructing a robust Luenberger observer for each subsystem.展开更多
Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive exa...Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive examination of curtain walls from an energy-engineering perspective,highlighting their structural typologies(Stick and Unitized),material configurations,and integration with smart technologies such as electrochromic glazing,parametric design algorithms,and Building Management Systems(BMS).Thestudy explores the thermal,acoustic,and solar performance of curtain walls across various climatic zones,supported by comparative analyses and iconic case studies including Apple Park,Burj Khalifa,and Milad Tower.Key challenges—including installation complexity,high maintenance costs,and climate sensitivity—are critically assessed alongside proposed solutions.A central innovation of this work lies in framing curtain walls not only as passive architectural elements but as dynamic interfaces that modulate energy flows,reduce HVAC loads,and enhance occupant comfort.The reviewed data indicate that optimized curtain wall configurations—especially those integrating electrochromic glazing and BIPV modules—can achieve annual energy consumption reductions ranging fromapproximately 5%to 27%,depending on climate,control strategy,and facade typology.The findings offer a valuable reference for architects,energy engineers,and decision-makers seeking to integrate high-performance facades into future-ready building designs.展开更多
In this paper, as a new contribution to the tensor-centric warfare (TCW) series [1] [2] [3] [4], we extend the kinetic TCW-framework to include non-kinetic effects, by addressing a general systems confrontation [5], w...In this paper, as a new contribution to the tensor-centric warfare (TCW) series [1] [2] [3] [4], we extend the kinetic TCW-framework to include non-kinetic effects, by addressing a general systems confrontation [5], which is waged not only in the traditional physical Air-Land-Sea domains, but also simultaneously across multiple non-physical domains, including cyberspace and social networks. Upon this basis, this paper attempts to address a more general analytical scenario using rigorous topological methods to introduce a two-level topological representation of modern armed conflict;in doing so, it extends from the traditional red-blue model of conflict to a red-blue-green model, where green represents various neutral elements as active factions;indeed, green can effectively decide the outcomes from red-blue conflict. System confrontations at various stages of the scenario will be defined by the non-equilibrium phase transitions which are superficially characterized by sudden entropy growth. These will be shown to have the underlying topology changes of the systems-battlespace. The two-level topological analysis of the systems-battlespace is utilized to address the question of topology changes in the combined battlespace. Once an intuitive analysis of the combined battlespace topology is performed, a rigorous topological analysis follows using (co)homological invariants of the combined systems-battlespace manifold.展开更多
In this work,general definition and meaning of knowledge,information,data and symbol are expressed generally/specifically,and the differences/relationships between them are briefly discussed.The general definition of ...In this work,general definition and meaning of knowledge,information,data and symbol are expressed generally/specifically,and the differences/relationships between them are briefly discussed.The general definition of system is briefly interpreted,and the semantic contents of the concept“system”expressed with nine perspectives generally.The meaning and importance of philosophy of information are then defined according to the general approaches.Some of the important philosophers of information and their professional interests are evaluated.The meaning and importance of mind,and philosophy of mind are discussed due to general approaches.Some of the philosophers of mind and their interests are evaluated and compared with a table.Systems philosophy is defined in line with general approaches,and its relationships with four main areas are stated.The new perspective of philosophy is then defined by the author generally,and the eight basic branches of philosophy and hybrid philosophy,along with their relevant theories,are briefly outlined.R-Philosophy,R-Science,R-Information,R-Mind,and R-System new disciplines are shortly expressed.New perspective for philosophy of information is defined as complementary branch with other seven basic philosophies.Types of information due to method,size,and content are given with a table.The 23 sub-branches of philosophy of information are defined generally/specifically.Philosophy of basic senses and some other branches are new defined,and new perspectives for philosophy of mind and for some other branches are expressed specifically.18 hybrid philosophies for information are defined,and their relations with philosophy of information explained generally/specifically.General disciplines and concepts about information are defined shortly,and information science(s),2D-6D hybrid information sciences,information system(s),and information&communication systems are given with details.New perspective for philosophy of system is defined,and types of system due to methods,size,and content are given with a table.Hybrid philosophies for systems,and some disciplines and concepts about systems are shortly outlined.Systems science(s)are defined due to four categories and each of these categories is explained with detailed tables.Hybrid systems defined by the author are shortly interpreted.展开更多
In a global environment where energy and labor are becoming increasingly expensive, continuous mining systems such as In-Pit Crushing and Conveying(IPCC) systems have been advanced as offering a real alternative to co...In a global environment where energy and labor are becoming increasingly expensive, continuous mining systems such as In-Pit Crushing and Conveying(IPCC) systems have been advanced as offering a real alternative to conventional truck haulage systems. The implementation of IPCC systems in hard rock operations in open pit mines however requires different and more comprehensive planning approaches in order to adequately reflect the practical aspects associated with these. This paper investigates the impact that these approaches may have on the implementation of IPCC systems on a basic metalliferous deposit amenable to open pit exploitation. A strategic life of mine plan to provide numerous economic indicators for each approach is analyzed and compared to traditional truck haulage systems. The mine planning and evaluation process highlights the increased overall resource recovery that may accompany the use of IPCC systems. This investigation also provides insights into the issues associated with IPCC and the scale and type of operation and orebody that is likely to provide a feasible alternative to truck haulage.展开更多
Pharmacokinetic models are mathematical models which provide insights into the interaction of chemicals with biological processes. During recent decades, these models have become central of attention in industry that ...Pharmacokinetic models are mathematical models which provide insights into the interaction of chemicals with biological processes. During recent decades, these models have become central of attention in industry that caused to do a lot of efforts to make them more accurate. Current work studies the process of drug and nanoparticle (NPs) distribution throughout the body which consists of a system of ordinary differential equations. We use a tri-compartmental model to study the perfusion of NPs in tissues and a six-compartmental model to study drug distribution in different body organs. We have performed global sensitivity analysis by LHS Monte Carlo method using PRCC. We identify the key parameters that contribute most significantly to the absorption and distribution of drugs and NPs in different organs in body.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency bi...Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents(LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliableidentification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.展开更多
文摘A transformation of the electron states—say those enclosed in a potential box—into the de Broglie waves done in the paper, enabled us to calculate the energy change between two quantum levels as a function of the specific heat and difference of the temperature between the states. In consequence, the energy difference and that of entropy between the levels could be examined in terms of the appropriate classical parameters. In the next step, the time interval necessary for the electron transition between the levels could be associated with the classical electrodynamical parameters like the electric resistance and capacitance connected with the temporary formation of the electric cell in course of the transition. The parameters characterizing the mechanical inertia of the electron were next used as a check of the electrodynamical formulae referring to transition.
基金supported by the National Natural Science Foundation of China (Nos. 41806073, 41530963)the Natural Science Foundation of Shandong Province (No. ZR 2017BD014)+1 种基金the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology (No. DMSM 2017042)the Fundamental Research Funds for the Central Universities (Nos. 201964016, 201851023)
文摘Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.
文摘Safety assessment of genetically modified organisms (GMOs) is a contentious topic. Proponents of GMOs assert that GMOs are safe since the FDA’s policy of substantial equivalence considers GMOs “equivalent” to their non-GMO counterparts, and argue that genetic modification (GM) is simply an extension of a “natural” process of plant breeding, a form of “genetic modification”, though done over longer time scales. Anti-GMO activists counter that GMOs are unsafe since substantial equivalence is unscientific and outdated since it originates in the 1970s to assess safety of medical devices, which are not comparable to the complexity of biological systems, and contend that targeted GM is not plant breeding. The heart of the debate appears to be on the methodology used to determine criteria for substantial equivalence. Systems biology, which aims to understand complexity of the whole organism, as a system, rather than just studying its parts in a reductionist manner, may provide a framework to determine appropriate criteria, as it recognizes that GM, small or large, may affect emergent properties of the whole system. Herein, a promising computational systems biology method couples known perturbations on five biomolecules caused by the CP4 EPSPS GM of Glycine max L. (soybean), with an integrative model of C1 metabolism and oxidative stress (two molecular systems critical to plant function). The results predict significant accumulation of formaldehyde and concomitant depletion of glutathione in the GMO, suggesting how a “small” and single GM creates “large” and systemic perturbations to molecular systems equilibria. Regulatory agencies, currently reviewing rules for GMO safety, may wish to adopt a systems biology approach using a combination of in silico, computational methods used herein, and subsequent targeted experimental in vitro and in vivo designs, to develop a systems understanding of “equivalence” using biomarkers, such as formaldehyde and glutathione, which predict metabolic disruptions, towards modernizing the safety assessment of GMOs.
基金Hongguang Wu,Both authors contributed equally to this work and share first authorshipLing Dong,Both authors contributed equally to this work and share first authorship。
文摘The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
文摘A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.
文摘In this paper, H∞ optimal model reduction for singular fast subsystems will be inves-tigated. First, error system is established to measure the error magnitude between the original andreduced systems, and it is demonstrated that the new feature for model reduction of singular systemsis to make H∞ norm of the error system finite and minimal. The necessary and su?cient conditionis derived for the existence of the H∞ suboptimal model reduction problem. Next, we give an exactand practicable algorithm to get the parameters of the reduced subsystems by applying the matrixtheory. Meanwhile, the reduced system may be also impulsive. The advantages of the proposedalgorithm are that it is more ?exible in a straight-forward way without much extra computation, andthe order of the reduced systems is as minimal as possible. Finally, one illustrative example is givento illustrate the e?ectiveness of the proposed model reduction approach.
文摘Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.
文摘At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI). It cannot meet high requirements for high-speed transmission of modern logging system. The development of communication technology has laid some foundation for this requirement. For this purpose, the Orthogonal Frequency Division Multiplexing (OFDM) Wireless Downhole Transmission Systems are proposed for the first time because of their high transmission rate, anti-inter-symbol-interference (ISI), and high spectral efficiency, etc. Due to non-linear power amplifier (PA) of logging systems with limited dynamic range, the drawbacks of high peak-average power ratio (PAPR) may outweigh all the potential benefits of OFDM wireless downhole transmission systems. Selective mapping (SLM) method can reduce the PAPR of OFDM logging signals without distortion. But at the receiver, the conventional SLM method needs exact bits of side information (SI) to recover the data signal. The probability of erroneous SI detection has a significant influence on the error performance of the system. And individual transmissions of SI result in the reduction of bandwidth efficiency. To restore the exact data signal, our scheme codes the SI bits by linear block codes (LBC), and is easily decoded by syndrome decoding. And then the coding SI bits are superimposed onto the logging signals to omit SI bits transmission. The theory and simulation results show that the proposed method has better performance than the conventional one. Accordingly, the OFDM wireless downhole transmission systems can tackle the high PAPR problem, and highten the transmission rate of logging signals.
文摘In this paper, we study the existence of solutions for 2l order (n × n) cooperative systems governed by Dirichlet and Neumann problems involving hyperbolic operators with an infinite number of variables and with variable coefficients. The necessary and sufficient conditions for optimality of the distributed control with constraints are obtained and the set of inequalities that defining the optimal control of these systems are also obtained.
基金supported by the National Natural Science Foundation of China(No.61205106)
文摘Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO) communica- tion systems, this paper establishes a channel model for the mobile platform. Based on the combination of Alamouti space-time code and time hopping ultra-wide band (TH-UWB) communications, a novel repetition space-time coding (RSTC) method for mobile 2x2 free-space optical communications with pulse position modulation (PPM) is devel- oped. In particular, two decoding methods of equal gain combining (EGC) maximum likelihood detection (MLD) and correlation matrix detection (CMD) are derived. When a quasi-static fading and weak turbulence channel model are considered, simulation results show that whether the channel state information (CSI) is known or not, the coding sys- tem demonstrates more significant performance of the symbol error rate (SER) than the uncoding. In other words, transmitting diversity can be achieved while conveying the information only through the time delays of the modulated signals transmitted from different antennas. CMD has almost the same effect of signal combining with maximal ratio combining (MRC). However, when the channel correlation increases, SER performance of the coding 2×2 system de- grades significantly.
文摘德国Wibu-Systems专业致力于软件保护,并将在CeBIT asia 4号厅C19/14展位中展示其专业的Wibu-Key和CodeMeter软件保护方案。Wibu-Systems在今年三月发布的CodeMeter ExpressCard(tm)模块标志了其在该领域的领导地位。新的ExpressCard技术使CodeMeter在一个小小的移动设备中提供安全的数字版权管理,并附加了10G或更大的大容量存储空间。
文摘Objectives: To evaluate the various scoring systems, APACHE II, SOFA, SAPS II and MPM for the prediction of prognosis of the obstetric critically ill patients admitted in a well supported ICU unit. Material and methods: A prospective, observational study was conducted among all the obstetric patients admitted to the ICU between October 2011 and December 2012, during a period of 15 months. The data collected were of three categories: demographic, obstetric and ICU related. Results and Analysis: The patients admitted in the postpartum period (n = 28, 53.84%) were more than the antenatal admissions (n = 24, 46.16%). 32.69% of admissions were in the third trimester. The most common mode of delivery was emergency caesarean section (n = 27/40, 67.5%). Total caesarean deliveries were 35/40 = 87.5% in ICU patients. The mortality prediction scores were calculated for 41 patients only as acid blood gas analysis was not available for the rest. Patients required ventilation—51.92%, hemodialysis—19.23%, inotropic support—38.46%, blood transfusion—50%. Analysis of the statistical data for ICU parameters has shown that hospital stay (p = 0.011) and ventilation days (p = 0.014) are significant predictors of maternal outcome. Age (p = 0.789), ICU stay (p = 0.701) and RRT (p = 0.632) are not significant. Among the obstetric ICU admissions, hypertensive disorders of pregnancy (30.76%) was the predominant cause followed by obstetric haemorrhage (23.07%). Discussion: HELLP syndrome and eclampsia (n = 4, 57%) were the major causes of maternal deaths with anaesthetic mishaps accounting for 29% (n = 2). One (14%) death was due to Eisenmenger’s syndrome. In one case of H1N1 admitted with ARDS, caesarean section was done in MICU for worsening respiratory distress. The maternal mortality in this series of cases was 7/52 = 13.46%, excluding the unavoidable cases of maternal death (3 cases brain dead at admission and one cardiac arrest in emergency room), our maternal mortality rate is 3/48 = 6.25%. The predicted mortality as measured by all scoring systems (for 41 patients) was between 17% and 30%. The observed mortality was around 17%. Hence a reduction in mortality of 40% has been achieved due to intensive care. Conclusions: Leading cause of maternal mortality was HELLP syndrome. Hypertensive disorders of pregnancy were the most common cause of admission to ICU. In this study, all the scores were equally significant in predicting maternal mortality. Amongst the interventions done for these patients mechanical ventilation seems to have an influence on the overall outcome.
基金supported in part by the Japan Ministry of Education,Sciences and Culture under Grants-in-Aid for Scientific Research(C)(21560471)the Green Industry Leading Program of Hubei University of Technology(CPYF2017003)the National Natural Science Foundation of China(1160147411461082)
文摘We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single quadratically stable subsystem, if a convex combination of subsystems is quadratically stable, then we propose a state-dependent switching law, based on the convex combination of subsystems, such that the entire switched linear system is quadratically stable. When the state information is not available, we extend the discussion to designing an outputdependent switching law by constructing a robust Luenberger observer for each subsystem.
文摘Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive examination of curtain walls from an energy-engineering perspective,highlighting their structural typologies(Stick and Unitized),material configurations,and integration with smart technologies such as electrochromic glazing,parametric design algorithms,and Building Management Systems(BMS).Thestudy explores the thermal,acoustic,and solar performance of curtain walls across various climatic zones,supported by comparative analyses and iconic case studies including Apple Park,Burj Khalifa,and Milad Tower.Key challenges—including installation complexity,high maintenance costs,and climate sensitivity—are critically assessed alongside proposed solutions.A central innovation of this work lies in framing curtain walls not only as passive architectural elements but as dynamic interfaces that modulate energy flows,reduce HVAC loads,and enhance occupant comfort.The reviewed data indicate that optimized curtain wall configurations—especially those integrating electrochromic glazing and BIPV modules—can achieve annual energy consumption reductions ranging fromapproximately 5%to 27%,depending on climate,control strategy,and facade typology.The findings offer a valuable reference for architects,energy engineers,and decision-makers seeking to integrate high-performance facades into future-ready building designs.
文摘In this paper, as a new contribution to the tensor-centric warfare (TCW) series [1] [2] [3] [4], we extend the kinetic TCW-framework to include non-kinetic effects, by addressing a general systems confrontation [5], which is waged not only in the traditional physical Air-Land-Sea domains, but also simultaneously across multiple non-physical domains, including cyberspace and social networks. Upon this basis, this paper attempts to address a more general analytical scenario using rigorous topological methods to introduce a two-level topological representation of modern armed conflict;in doing so, it extends from the traditional red-blue model of conflict to a red-blue-green model, where green represents various neutral elements as active factions;indeed, green can effectively decide the outcomes from red-blue conflict. System confrontations at various stages of the scenario will be defined by the non-equilibrium phase transitions which are superficially characterized by sudden entropy growth. These will be shown to have the underlying topology changes of the systems-battlespace. The two-level topological analysis of the systems-battlespace is utilized to address the question of topology changes in the combined battlespace. Once an intuitive analysis of the combined battlespace topology is performed, a rigorous topological analysis follows using (co)homological invariants of the combined systems-battlespace manifold.
文摘In this work,general definition and meaning of knowledge,information,data and symbol are expressed generally/specifically,and the differences/relationships between them are briefly discussed.The general definition of system is briefly interpreted,and the semantic contents of the concept“system”expressed with nine perspectives generally.The meaning and importance of philosophy of information are then defined according to the general approaches.Some of the important philosophers of information and their professional interests are evaluated.The meaning and importance of mind,and philosophy of mind are discussed due to general approaches.Some of the philosophers of mind and their interests are evaluated and compared with a table.Systems philosophy is defined in line with general approaches,and its relationships with four main areas are stated.The new perspective of philosophy is then defined by the author generally,and the eight basic branches of philosophy and hybrid philosophy,along with their relevant theories,are briefly outlined.R-Philosophy,R-Science,R-Information,R-Mind,and R-System new disciplines are shortly expressed.New perspective for philosophy of information is defined as complementary branch with other seven basic philosophies.Types of information due to method,size,and content are given with a table.The 23 sub-branches of philosophy of information are defined generally/specifically.Philosophy of basic senses and some other branches are new defined,and new perspectives for philosophy of mind and for some other branches are expressed specifically.18 hybrid philosophies for information are defined,and their relations with philosophy of information explained generally/specifically.General disciplines and concepts about information are defined shortly,and information science(s),2D-6D hybrid information sciences,information system(s),and information&communication systems are given with details.New perspective for philosophy of system is defined,and types of system due to methods,size,and content are given with a table.Hybrid philosophies for systems,and some disciplines and concepts about systems are shortly outlined.Systems science(s)are defined due to four categories and each of these categories is explained with detailed tables.Hybrid systems defined by the author are shortly interpreted.
文摘In a global environment where energy and labor are becoming increasingly expensive, continuous mining systems such as In-Pit Crushing and Conveying(IPCC) systems have been advanced as offering a real alternative to conventional truck haulage systems. The implementation of IPCC systems in hard rock operations in open pit mines however requires different and more comprehensive planning approaches in order to adequately reflect the practical aspects associated with these. This paper investigates the impact that these approaches may have on the implementation of IPCC systems on a basic metalliferous deposit amenable to open pit exploitation. A strategic life of mine plan to provide numerous economic indicators for each approach is analyzed and compared to traditional truck haulage systems. The mine planning and evaluation process highlights the increased overall resource recovery that may accompany the use of IPCC systems. This investigation also provides insights into the issues associated with IPCC and the scale and type of operation and orebody that is likely to provide a feasible alternative to truck haulage.
文摘Pharmacokinetic models are mathematical models which provide insights into the interaction of chemicals with biological processes. During recent decades, these models have become central of attention in industry that caused to do a lot of efforts to make them more accurate. Current work studies the process of drug and nanoparticle (NPs) distribution throughout the body which consists of a system of ordinary differential equations. We use a tri-compartmental model to study the perfusion of NPs in tissues and a six-compartmental model to study drug distribution in different body organs. We have performed global sensitivity analysis by LHS Monte Carlo method using PRCC. We identify the key parameters that contribute most significantly to the absorption and distribution of drugs and NPs in different organs in body.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
基金Supported by The grant from the National Institutes of Health,Martin Delaney Collaboratory of AIDS Researchers for Eradication(CARE,U19 AI 096113)the Swiss National Science Foundation(grant 31003A_146579)the University of California,San Diego Fellowships for Graduate Researchers,Frontiers of Innovation Scholars Program
文摘Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents(LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliableidentification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.