This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a pr...This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.展开更多
We have studied the effect of the spontaneously generated coherence (SGC) on gain of lasing without inversion (LWI) in a closed three-level A-type atomic system with Doppler broadening. It is shown that, regardles...We have studied the effect of the spontaneously generated coherence (SGC) on gain of lasing without inversion (LWI) in a closed three-level A-type atomic system with Doppler broadening. It is shown that, regardless of the driving and probe fields being co- or counter-propagating, at a suitable value of the Doppler width, we can obtain a much larger LWI gain with SGC than that without SGC; and the region of the LWI gain spectrum with SGC is obviously larger than that without SGC. When the Doppler width takes a constant value, the gain does not monotonically decrease or increase with increasing strength of SGC, the largest LWI gain can be obtained by adjusting strength of SGC. Generally speaking, the co-propagating probe and driving fields is favourable to obtain a larger LWI gain.展开更多
A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency ...A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.展开更多
Power system stability is enhanced through a novel stabilizer developed around an adaptive fuzzy sliding mode approach which applies the Nussbaum gain to a nonlinear model of a single-machine infinite-bus (SMIB) and...Power system stability is enhanced through a novel stabilizer developed around an adaptive fuzzy sliding mode approach which applies the Nussbaum gain to a nonlinear model of a single-machine infinite-bus (SMIB) and multi-machine power system stabilizer subjected to a three phase fault. The Nussbaum gain is used to avoid the positive sign constraint and the problem of controllability of the system. A comparative simulation study is presented to evaluate the achieved performance.展开更多
We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion...We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.展开更多
This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in outpu...This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in output feedback form.We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori.It is not necessary to have both the limiting assumptions that the exogenous signal co and the unknown parameter ju belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds.The effectiveness of the proposed algorithm is shown with the help of an example.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
In this paper,the leader–follower consensus of feedforward nonlinear multi-agent systems is achieved by designing the distributed output feedback controllers with a time-varying gain.The agents dynamics are assumed t...In this paper,the leader–follower consensus of feedforward nonlinear multi-agent systems is achieved by designing the distributed output feedback controllers with a time-varying gain.The agents dynamics are assumed to be in upper triangular structure and satisfy Lipschitz conditions with an unknown constant multiplied by a time-varying function.A time-varying gain,which increases monotonously and tends to infinity,is proposed to construct a compensator for each follower agent.Based on a directed communication topology,the distributed output feedback controller with a time-varying gain is designed for each follower agent by only using the output information of the follower and its neighbors.It is proved by the Lyapunov theorem that the leader–follower consensus of the multi-agent system is achieved by the proposed consensus protocol.The effectiveness of the proposed time-varying gain method is demonstrated by a circuit system.展开更多
Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturban...Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.展开更多
Objective:To analyze the relationship between body mass index(BMI)before pregnancy and gestational weight gain throughout pregnancy with the incidence of preeclampsia.Methods:This was a systematic review-meta analysis...Objective:To analyze the relationship between body mass index(BMI)before pregnancy and gestational weight gain throughout pregnancy with the incidence of preeclampsia.Methods:This was a systematic review-meta analysis of literature collected from three e-databases:Scopus,PubMed,and Science Direct.Quality assessment was measured with the Effective Public Health Practice Project methods.Meta-analysis was done by calculating the fixed and random-effects of odds ratio(OR)for each BMI category and gestational weight gain as compared with the incidence of preeclampsia.Results:Overweight was associated with a significantly increased risk of preeclampsia(OR=2.152,95%CI 1.363-3.400;P=0.001).Obesity was also associated with a noticeably increased risk of preeclampsia(OR=2.856,95%CI 1.755-4.649;P<0.001).Meanwhile,underweight was associated with a significantly reduced risk of preeclampsia(OR=0.639,95%CI 0.500-0.817;P<0.001)when compared with normal BMI.Pregnant women who gained weight below the standard throughout pregnancy was a protective factor from preeclampsia(OR=0.813,95%CI 0.610-1.083;P=0.157)whereas pregnant women who gained weight above the standard had almost doubled risk of preeclampsia(OR=1.850,95%CI 1.377-2.485;P<0.001).Conclusions:The result of this study affirms the role of overweight-obesity pre-pregnancy,and gestational weight gain above the standard during pregnancy as significant risk factors for developing preeclampsia.展开更多
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
The bipartite consensus problem is addressed for a class of nonlinear time-delay multiagent systems in this paper.Therein,the uncertain nonlinear dynamics of all agents satisfy a Lipschitz growth condition with unknow...The bipartite consensus problem is addressed for a class of nonlinear time-delay multiagent systems in this paper.Therein,the uncertain nonlinear dynamics of all agents satisfy a Lipschitz growth condition with unknown constants,and part of the state information cannot be measured.In this case,a time-varying gain compensator is constructed,which only utilizes the output information of the follower and its neighbors.Subsequently,a distributed output feedback control protocol is proposed on the basis of the compensator.According to Lyapunov stability theory,it is proved that the bipartite consensus can be guaranteed by means of the designed control protocol.Different from the existing literature,this paper studies the leader-follower consensus problem under a weaker connectivity condition,i.e.,the signed directed graph is structurally balanced and contains a directed spanning tree.Two simulation examples are carried out to show the feasibility of the proposed control strategy.展开更多
This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two...This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two dynamic parameters.Specifically,a set of auxiliary variables is first introduced through state transformation.These variables combine the original system states and the two introduced dynamic parameters,facilitating the closed-loop system stability analyses.Then,the two dynamic parameters are delicately designed by utilizing the Lyapunov method,ensuring that all the closed-loop system states are globally fixed-time stable.Compared with existing results,the“explosion of complexity”problem of backstepping control is avoided.Moreover,the two designed dynamic parameters are dependent on system states rather than a time-varying function,thus the proposed controller is still valid beyond the given fixedtime convergence instant.The effectiveness of the proposed method is demonstrated through two practical systems.展开更多
A 2"×2"BC501A liquid scintillation detector with a gain stabilization system is developed and applied to neutron andγ-ray measurement on the EAST tokamak.Energy calibration of a liquid scintillator using a fas...A 2"×2"BC501A liquid scintillation detector with a gain stabilization system is developed and applied to neutron andγ-ray measurement on the EAST tokamak.Energy calibration of a liquid scintillator using a fast coincidence method is presented and compared with the Monte Carlo simulation.Determination of the proton light output function of the BC501A is presented.Results from dedicated experiments with an Am-Be neutron source,γsource and quasi-monoenergetic neutron beams,and from measurements on EAST tokamak are presented and discussed.展开更多
The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum wit...The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.展开更多
The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is...The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.展开更多
Differing from the general analysis,the process of continuous wave(CW) interference being despreaded in a direct sequence spread spectrum(DSSS) system is reanalyzed. It is proved that the result sequence of continuous...Differing from the general analysis,the process of continuous wave(CW) interference being despreaded in a direct sequence spread spectrum(DSSS) system is reanalyzed. It is proved that the result sequence of continuous wave interference being despreaded varies according to sinusoid in time.Its frequency and amplitude are derived.The processing gain is discussed under 3 cases in comparison with traditional analysis.Results show that the processing gain varies according to the frequency offset of CW to DSSS signal carrier.展开更多
A new output feedback adaptive control scheme for multi-input and multi-output nonlinear systems with parametric uncertainty is presented based on the Nussbaum gain method and the backstepping approach. The high frequ...A new output feedback adaptive control scheme for multi-input and multi-output nonlinear systems with parametric uncertainty is presented based on the Nussbaum gain method and the backstepping approach. The high frequency gain matrix of the linear part of the system is not necessarily positive definite, but can be transformed into a lower or upper triangular matrix whose signs of diagonal dements are unknown. The new required condition for the high fi'equency gain matrix can be easily checked for certain plants so that the proposed method is widely applicable. The global stability of the closed loop systems is guaranteed through this control scheme, at the same time the tracking error converges to zero.展开更多
Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive an...Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.展开更多
基金supported by the National Natural Science Foundation of China(61803370,61622309)the China Postdoctoral Science Foundation(2018M630216)the National Key Research and Development Program of China(2016YFB0901902)
文摘This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10675076), the Natural Science Foundation of Shandong Province, China (Grant No Y2006A21) and the State Key Laboratory of High Field Laser Physics, Shanghai Institute of 0ptics and Fine Mechanics, Chinese Academy of Sciences.
文摘We have studied the effect of the spontaneously generated coherence (SGC) on gain of lasing without inversion (LWI) in a closed three-level A-type atomic system with Doppler broadening. It is shown that, regardless of the driving and probe fields being co- or counter-propagating, at a suitable value of the Doppler width, we can obtain a much larger LWI gain with SGC than that without SGC; and the region of the LWI gain spectrum with SGC is obviously larger than that without SGC. When the Doppler width takes a constant value, the gain does not monotonically decrease or increase with increasing strength of SGC, the largest LWI gain can be obtained by adjusting strength of SGC. Generally speaking, the co-propagating probe and driving fields is favourable to obtain a larger LWI gain.
基金Project supported by the Natural Science Foundation of Guangdong Province (Grant No 05301018), the Research and Development Fund of Shenzhen University, China (Grant No 200549), and the National Natural Science Foundation of China (Grant Nos 10334010 and 10404009).
文摘A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.
文摘Power system stability is enhanced through a novel stabilizer developed around an adaptive fuzzy sliding mode approach which applies the Nussbaum gain to a nonlinear model of a single-machine infinite-bus (SMIB) and multi-machine power system stabilizer subjected to a three phase fault. The Nussbaum gain is used to avoid the positive sign constraint and the problem of controllability of the system. A comparative simulation study is presented to evaluate the achieved performance.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60978013)the Shanghai Rising Star Project,China (Grant No. 11QA1407400)
文摘We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.
基金supported by the National Natural Science Foundation of China(61663030,61663032)the Natural Science Foundation of Jiangxi Province(20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(GJJ150753)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(TX201404003)the Key Laboratory of Nondestructive Testing(Nanchang Hangkong University)Ministry of Education(ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(JXYJG-2017-131)
文摘This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in output feedback form.We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori.It is not necessary to have both the limiting assumptions that the exogenous signal co and the unknown parameter ju belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds.The effectiveness of the proposed algorithm is shown with the help of an example.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘In this paper,the leader–follower consensus of feedforward nonlinear multi-agent systems is achieved by designing the distributed output feedback controllers with a time-varying gain.The agents dynamics are assumed to be in upper triangular structure and satisfy Lipschitz conditions with an unknown constant multiplied by a time-varying function.A time-varying gain,which increases monotonously and tends to infinity,is proposed to construct a compensator for each follower agent.Based on a directed communication topology,the distributed output feedback controller with a time-varying gain is designed for each follower agent by only using the output information of the follower and its neighbors.It is proved by the Lyapunov theorem that the leader–follower consensus of the multi-agent system is achieved by the proposed consensus protocol.The effectiveness of the proposed time-varying gain method is demonstrated by a circuit system.
基金National High-tech Research and Development Program of China (2009AA04Z412)"111" ProjectBUAA Fund of Graduate Education and Development
文摘Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.
文摘Objective:To analyze the relationship between body mass index(BMI)before pregnancy and gestational weight gain throughout pregnancy with the incidence of preeclampsia.Methods:This was a systematic review-meta analysis of literature collected from three e-databases:Scopus,PubMed,and Science Direct.Quality assessment was measured with the Effective Public Health Practice Project methods.Meta-analysis was done by calculating the fixed and random-effects of odds ratio(OR)for each BMI category and gestational weight gain as compared with the incidence of preeclampsia.Results:Overweight was associated with a significantly increased risk of preeclampsia(OR=2.152,95%CI 1.363-3.400;P=0.001).Obesity was also associated with a noticeably increased risk of preeclampsia(OR=2.856,95%CI 1.755-4.649;P<0.001).Meanwhile,underweight was associated with a significantly reduced risk of preeclampsia(OR=0.639,95%CI 0.500-0.817;P<0.001)when compared with normal BMI.Pregnant women who gained weight below the standard throughout pregnancy was a protective factor from preeclampsia(OR=0.813,95%CI 0.610-1.083;P=0.157)whereas pregnant women who gained weight above the standard had almost doubled risk of preeclampsia(OR=1.850,95%CI 1.377-2.485;P<0.001).Conclusions:The result of this study affirms the role of overweight-obesity pre-pregnancy,and gestational weight gain above the standard during pregnancy as significant risk factors for developing preeclampsia.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金supported by the National Natural ScienceFoundation ofChina(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘The bipartite consensus problem is addressed for a class of nonlinear time-delay multiagent systems in this paper.Therein,the uncertain nonlinear dynamics of all agents satisfy a Lipschitz growth condition with unknown constants,and part of the state information cannot be measured.In this case,a time-varying gain compensator is constructed,which only utilizes the output information of the follower and its neighbors.Subsequently,a distributed output feedback control protocol is proposed on the basis of the compensator.According to Lyapunov stability theory,it is proved that the bipartite consensus can be guaranteed by means of the designed control protocol.Different from the existing literature,this paper studies the leader-follower consensus problem under a weaker connectivity condition,i.e.,the signed directed graph is structurally balanced and contains a directed spanning tree.Two simulation examples are carried out to show the feasibility of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(61821004,U1964207,20221017-10)。
文摘This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two dynamic parameters.Specifically,a set of auxiliary variables is first introduced through state transformation.These variables combine the original system states and the two introduced dynamic parameters,facilitating the closed-loop system stability analyses.Then,the two dynamic parameters are delicately designed by utilizing the Lyapunov method,ensuring that all the closed-loop system states are globally fixed-time stable.Compared with existing results,the“explosion of complexity”problem of backstepping control is avoided.Moreover,the two designed dynamic parameters are dependent on system states rather than a time-varying function,thus the proposed controller is still valid beyond the given fixedtime convergence instant.The effectiveness of the proposed method is demonstrated through two practical systems.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB106004 and 2012GB101003)National Natural Science Foundation of China(No.91226102)
文摘A 2"×2"BC501A liquid scintillation detector with a gain stabilization system is developed and applied to neutron andγ-ray measurement on the EAST tokamak.Energy calibration of a liquid scintillator using a fast coincidence method is presented and compared with the Monte Carlo simulation.Determination of the proton light output function of the BC501A is presented.Results from dedicated experiments with an Am-Be neutron source,γsource and quasi-monoenergetic neutron beams,and from measurements on EAST tokamak are presented and discussed.
文摘The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.
基金Supported by National Natural Science Foundation of P. R. China (60572070, 60325311, 60534010) Natural Science Foundation of Liaoning Province (20022030)
文摘The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.
文摘Differing from the general analysis,the process of continuous wave(CW) interference being despreaded in a direct sequence spread spectrum(DSSS) system is reanalyzed. It is proved that the result sequence of continuous wave interference being despreaded varies according to sinusoid in time.Its frequency and amplitude are derived.The processing gain is discussed under 3 cases in comparison with traditional analysis.Results show that the processing gain varies according to the frequency offset of CW to DSSS signal carrier.
基金This project was supported by the National Natural Science Foundation of China (60574007).
文摘A new output feedback adaptive control scheme for multi-input and multi-output nonlinear systems with parametric uncertainty is presented based on the Nussbaum gain method and the backstepping approach. The high frequency gain matrix of the linear part of the system is not necessarily positive definite, but can be transformed into a lower or upper triangular matrix whose signs of diagonal dements are unknown. The new required condition for the high fi'equency gain matrix can be easily checked for certain plants so that the proposed method is widely applicable. The global stability of the closed loop systems is guaranteed through this control scheme, at the same time the tracking error converges to zero.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB215202)the National Natural Science Foundation of China(Grant Nos.61104080 and 61134001)the Fundamental Research Funds for the Central Universities(Grant No.CDJZR13 175501)
文摘Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.