Floating platform system has been extensively used in ocean exploitation, particularly for a tension-leg platform (TLP) system in deep water. Most of the TLPs are multi-mooring systems, where multi-joints are connec...Floating platform system has been extensively used in ocean exploitation, particularly for a tension-leg platform (TLP) system in deep water. Most of the TLPs are multi-mooring systems, where multi-joints are connected to the tension-legs so that the platform is not allowed to twist freely and may subject to enormous force induced by large incident waves in the weak-direction of the structure. This study aims to exploit a single moored offshore platform system that may attract less force and can be operated with less effort. In our analysis, in addition to mechanical properties of the tether, two important properties are also taken into consideration for the single mooring tether with expanded cross sectional dimension and utilization of stronger material, namely, the sag-extensibility and the flexural rigidity. Finally, the dynamic structural behavior produced by the mechanical effects on the new system is investigated and compared with that of traditional design while the wave-structure interactions of large body are also accounted for. Our study finds that the neglect of sag-extensibility or the flexural rigidity of large, strong mooring cable may result in a conservative but not necessarily safe design.展开更多
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go...In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.展开更多
The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations ...The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are estab- lished. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can' t be offered. First, the mass at non-tip po- sition is incorporated into the continuous dynamic equations of the system by use of the Dirac lunch tion and the Heaviside function. Then, based on the conclusions of orthogonalization about the nor- mal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-or- der model established in this paper, which indicates the dynamic responses of the rigid flexible cou- pling system with large overall motion accurately. The results also show that the mass has a soften- ing effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.展开更多
The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the ide...The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.展开更多
The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, ...The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, the eigenfunction does not satisfy the orthogonality under ordinary meaning. A new concept--augmented eigenvector is introduced, which is used to overcome the orthogonality problem of eigenvectors of linear multi-rigid-flexible-body system. The constitution method and the orthogonality of augmented eigenvector are expatiated. After the orthogonality of augmented eigenvector is acquired, the coupling of coordinates in dynamics equations can be released, which makes it possible to analyze exactly the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method.展开更多
Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of fail...Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.展开更多
A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed w...A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed with modal spread method, the position of the parachute is expressed with a hybrid coordinate method, and the kinematics of the terminally sensitive submunition is analyzed. Ten generalized coordinates relative to the attitude of the terminally sensitive submunition are chosen, and the correlative generalized active forces, the generalized inertial forces, the generalized internal forces are calculated in turn. On the base of the Kane's method, the ten degrees of freedom dynamic equations for the coupled terminally sensitive submunition are finally set up. This model can be used to expediently simulate and analyze accurately the exterior ballistic trajectory of terminally sensitive submunition, and provide the overall design of the terminally sensitive submunition with some helpful references.展开更多
Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping ...Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping algorithm is introduced. This method can avoid difficulties in solving differential equations with variable scale and its result can avoid energy inconsistency before and after impact from considering complexily of tangential sliding mode. An example is given to describe details using this algorithm.展开更多
In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a R...In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a Riemannian manifold with boundary;globally.under the assumption of energy conservation, the system behaves like a billiards system over a Riemannina manifold with boundary展开更多
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose...The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.展开更多
An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, ar...An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bi- furcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bi- furcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.展开更多
基金financially supported by the Science Council of Taiwan (Grant No. NSC-97-2221-E-110-080)
文摘Floating platform system has been extensively used in ocean exploitation, particularly for a tension-leg platform (TLP) system in deep water. Most of the TLPs are multi-mooring systems, where multi-joints are connected to the tension-legs so that the platform is not allowed to twist freely and may subject to enormous force induced by large incident waves in the weak-direction of the structure. This study aims to exploit a single moored offshore platform system that may attract less force and can be operated with less effort. In our analysis, in addition to mechanical properties of the tether, two important properties are also taken into consideration for the single mooring tether with expanded cross sectional dimension and utilization of stronger material, namely, the sag-extensibility and the flexural rigidity. Finally, the dynamic structural behavior produced by the mechanical effects on the new system is investigated and compared with that of traditional design while the wave-structure interactions of large body are also accounted for. Our study finds that the neglect of sag-extensibility or the flexural rigidity of large, strong mooring cable may result in a conservative but not necessarily safe design.
基金Key Laboratory of Fundamental Science for National Defense,China(No. HIT. KLOF. 2009058)
文摘In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.
文摘The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are estab- lished. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can' t be offered. First, the mass at non-tip po- sition is incorporated into the continuous dynamic equations of the system by use of the Dirac lunch tion and the Heaviside function. Then, based on the conclusions of orthogonalization about the nor- mal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-or- der model established in this paper, which indicates the dynamic responses of the rigid flexible cou- pling system with large overall motion accurately. The results also show that the mass has a soften- ing effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.
文摘The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.
文摘The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, the eigenfunction does not satisfy the orthogonality under ordinary meaning. A new concept--augmented eigenvector is introduced, which is used to overcome the orthogonality problem of eigenvectors of linear multi-rigid-flexible-body system. The constitution method and the orthogonality of augmented eigenvector are expatiated. After the orthogonality of augmented eigenvector is acquired, the coupling of coordinates in dynamics equations can be released, which makes it possible to analyze exactly the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method.
文摘Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.
文摘A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed with modal spread method, the position of the parachute is expressed with a hybrid coordinate method, and the kinematics of the terminally sensitive submunition is analyzed. Ten generalized coordinates relative to the attitude of the terminally sensitive submunition are chosen, and the correlative generalized active forces, the generalized inertial forces, the generalized internal forces are calculated in turn. On the base of the Kane's method, the ten degrees of freedom dynamic equations for the coupled terminally sensitive submunition are finally set up. This model can be used to expediently simulate and analyze accurately the exterior ballistic trajectory of terminally sensitive submunition, and provide the overall design of the terminally sensitive submunition with some helpful references.
基金the National Natural Science Foundation of China(No.10532050)the Na-tional Science Fund for Distinguished Young Scholars(No.10625211)the Science Development Foundation of Shandong University of Science and Techonogy(No.05g017)
文摘Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping algorithm is introduced. This method can avoid difficulties in solving differential equations with variable scale and its result can avoid energy inconsistency before and after impact from considering complexily of tangential sliding mode. An example is given to describe details using this algorithm.
文摘In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a Riemannian manifold with boundary;globally.under the assumption of energy conservation, the system behaves like a billiards system over a Riemannina manifold with boundary
文摘The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.
文摘An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bi- furcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bi- furcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.