To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr...Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.展开更多
The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction perform...The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction performance of channel coding functions as a significant way of optimizing the transmission reliability and efficiency.In this paper,the efficient estimation methods of the block error rate(BLER)performance for rate-compatible polar codes(RCPC)are proposed under several scenarios.Firstly,the BLER performance of RCPC is generally evaluated in the additive white Gaussian noise channels.That is further extended into the Rayleigh fading channel case using an equivalent estimation method.Moreover,with respect to the powerful decoder such as successive cancellation list decoding,the performance estimation is derived analytically based on the polar weight spectrum and BLER upper bounds.Theoretical evaluation and numerical simulation results show that the estimated performance can fit well the practical simulated results of RCPC under the objective conditions,verifying the validity of our proposed performance estimation methods.Furthermore,the application designs of the reliability estimation of RCPC are explored,particularly in the advantages of the signal-to-noise(SNR)estimation and throughput efficiency optimization of polar coded hybrid automatic repeat request.展开更多
By using Bayesian and multiple Bayesian method, the failure probability, reliability and mean time to failure(MTTF) of series system with cold standby units are estimated. At last, we compare the two estimators by mea...By using Bayesian and multiple Bayesian method, the failure probability, reliability and mean time to failure(MTTF) of series system with cold standby units are estimated. At last, we compare the two estimators by means of Monte_Carlo simulation.展开更多
Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performanc...Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performance anomalies during the flight process. These failures and anomalies may result in mission interruptions, crashes, and even threats to the lives and property of human beings.Thus, the study of flight reliability problems of multirotors is conductive to the development of the drone industry and has theoretical significance and engineering value. This paper proposes a reliable flight performance assessment method of multirotors based on an Interacting Multiple Model Particle Filter(IMMPF) algorithm and health degree as the performance indicator. First, the multirotor is modeled by the Stochastic Hybrid System(SHS) model, and the problem of reliable flight performance assessment is formulated. In order to solve the problem, the IMMPF algorithm is presented to estimate the real-time probability distribution of hybrid state of the established SHS-based multirotor model, since it can decrease estimation errors compared with the standard interacting multiple model algorithm based on extended Kalman filter. Then, the reliable flight performance is assessed with health degree based on the estimation result. Finally, a case study of a multirotor suffering from sensor anomalies is presented to validate the effectiveness of the proposed method.展开更多
Redundant actuator is the key component of Fly-By-Wire (FBW) system in which exists the inherent force fighting among different redundant channels at colligation point, This paper establishes the mathematical model ...Redundant actuator is the key component of Fly-By-Wire (FBW) system in which exists the inherent force fighting among different redundant channels at colligation point, This paper establishes the mathematical model of quad redundant actuator (QRA), investigates the force equalization algorithm and carries out the performance degradation simulation and reliability analysis under the first failure and the second failure. The results indicate that the optimal equalization algorithm can solve the force fighting effectively, and the QRA can operate at degradation performance continuously under the first failure and the second failure. With the dynamic fault tree analysis, this paper calculates the reliability based on the performance of QRA and proves that the redundant actuator has very high reliability and safety.展开更多
Based on the random perturbation technique for reliability sensitivity design,some realistic reliability-based sensitivity issues are discussed,some of which have a structure of high nonlinear performance functions.Co...Based on the random perturbation technique for reliability sensitivity design,some realistic reliability-based sensitivity issues are discussed,some of which have a structure of high nonlinear performance functions.Combining the related theories of the moment method of the reliability analysis,the matrix differential,and the Kronecker algebra,the reliability-based sensitivity method based on the perturbation method is modified if the first four moments of random variables are given.Meanwhile,a reliability-based sensitivity computation method is proposed.Some examples are used to show that using this method can effectively improve the accuracy of the reliability-based sensitivity computation and offer a reliable theoretic basis in engineering.展开更多
Components of electromechanical systems usually contain multiple performance parameters and degrade over time. In previous studies, the reliability of these electromechanical systems was analyzed by the traditional me...Components of electromechanical systems usually contain multiple performance parameters and degrade over time. In previous studies, the reliability of these electromechanical systems was analyzed by the traditional method, and the system reliability was estimated based on the reliability of components and the structures of the systems. The system reliability estimated by the traditional method could not reflect the performance of the systems. A new method is proposed in this paper to analyze the system reliability according to the data of multiple performance degraded processes of components. The performance distribution of a degraded component is obtained by the performance degradation analysis, and then states of the component are defined and corresponding state probabilities are estimated. The universal generating function method is proposed and extended to compute the performance distribution and reliability of the system based on the performances of components. A numerical example illustrates the proposed method. The results of the example show that the proposed method can relate the performance of the system to the performances of components and absolutely reflect the relationship between reliability and performance. Compared with the exact values of the system reliability, the results obtained by the proposed method is almost the same with the exact values, and the results obtained by the traditional method are conservative. The proposed method overcomes the shortcomings of the traditional method and provides a new approach to analyze the reliability of electromechanical systems with degraded components containing multiple performance parameters.展开更多
The aim of this study is to investigate the performance and reliability of urethral valve driven by ultrasonic-vaporized steam.The performance model of urethral valve is established to analyze the driving and opening/...The aim of this study is to investigate the performance and reliability of urethral valve driven by ultrasonic-vaporized steam.The performance model of urethral valve is established to analyze the driving and opening/closing performances of urethral valve.The reliability model of urethral valve is obtained,and the reliability simulation algorithm is proposed to calculate the reliability index of urethral valve.The numerical simulation and experimental results show that urethral valve has a good opening/closing performance,the driving performance can be improved by increasing ultrasonic intensity,radiation area and ultrasonic frequency,and the corrosion and aging of driving bags are the weak links of urethral valve.展开更多
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin...Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.展开更多
Actuation system is a vital system in an aircraft, providing the force necessary to move flight control surfaces. The system has a significant influence on the overall aircraft performance and its safety. In order to ...Actuation system is a vital system in an aircraft, providing the force necessary to move flight control surfaces. The system has a significant influence on the overall aircraft performance and its safety. In order to further increase already high reliability and safety, Airbus has imple- mented a dissimilar redundancy actuation system (DRAS) in its aircraft. The DRAS consists of a hydraulic actuation system (HAS) and an electro-hydrostatic actuation system (EHAS), in which the HAS utilizes a hydraulic source (HS) to move the control surface and the EHAS utilizes an elec- trical supply (ES) to provide the motion force. This paper focuses on the performance degradation processes and fault monitoring strategies of the DRAS, establishes its reliability model based on the generalized stochastic Petri nets (GSPN), and carries out a reliability assessment considering the fault monitoring coverage rate and the false alarm rate. The results indicate that the proposed reli- ability model of the DRAS, considering the fault and redundancy degradation process and identify monitoring, can express its fault logical relation potential safety hazards.展开更多
NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a nec...NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.展开更多
Mining blasts may be defined as the use of explosive charges in a controlled manner by following a tightly controlled timing sequence according to an assigned firing order. Changes of timing between charges may result...Mining blasts may be defined as the use of explosive charges in a controlled manner by following a tightly controlled timing sequence according to an assigned firing order. Changes of timing between charges may result in an altered firing order and failure of the blasting sequence, which can cause high vibration levels, poor fragmentation, and/or an undesirable rock mass movement direction. Despite the importance of timing in determining mine blast results, there exists a lack of methodologies or tools with which to assess performance of a complete blast based on delay type and timing sequence. This document applies reliability engineering principles to evaluate the performance of a mine blast. The analyses are based on test results of the accuracy and precision of electronic and pyrotechnic detonators for typical firing times used in a surface coal mine, but may be applied to a variety of mines and timing scenarios.展开更多
A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-spa...A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.展开更多
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat...The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.展开更多
For structures that only the predicted bounds of uncertainties are available,this study proposes a Bayesianmethod to logically evaluate the nonprobabilistic reliability of structures based on multi-ellipsoid convex mo...For structures that only the predicted bounds of uncertainties are available,this study proposes a Bayesianmethod to logically evaluate the nonprobabilistic reliability of structures based on multi-ellipsoid convex model and performance test data.According to the given interval ranges of uncertainties,we determine the initial characteristic parameters of a multi-ellipsoid convex set.Moreover,to update the plausibility of characteristic parameters,a Bayesian network for the information fusion of prior uncertainty knowledge and subsequent performance test data is constructed.Then,an updated multi-ellipsoid set with the maximum likelihood of the performance test data can be achieved.The credible non-probabilistic reliability index is calculated based on the Kriging-based surrogate model of the performance function.Several numerical examples are presented to validate the proposed Bayesian updating method.展开更多
The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were...The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.展开更多
The main electrical properties of advanced Silicon On Insulator MOSFETs are addressed. The subthreshold and high field operations are analysed as a function of device architecture. The special SOI parasitic phenomena,...The main electrical properties of advanced Silicon On Insulator MOSFETs are addressed. The subthreshold and high field operations are analysed as a function of device architecture. The special SOI parasitic phenomena, such as the floating body potential and temperature, are critically reviewed. The main limitations of submicron MOSFET are comparatively evaluated for various SOI structures. Short channel and hot carrier effects as well as the reliability of the SOI technology are investigated for gate length down to sub\|0 1 micron.展开更多
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金supported by Natural Science and Engineering Research Council (NSERC) of Canada
文摘Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.
基金supported by National Natural Science Foundation of China(No.62201596)Research Planning Project of National University of Defense Technology(ZK22-45).
文摘The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction performance of channel coding functions as a significant way of optimizing the transmission reliability and efficiency.In this paper,the efficient estimation methods of the block error rate(BLER)performance for rate-compatible polar codes(RCPC)are proposed under several scenarios.Firstly,the BLER performance of RCPC is generally evaluated in the additive white Gaussian noise channels.That is further extended into the Rayleigh fading channel case using an equivalent estimation method.Moreover,with respect to the powerful decoder such as successive cancellation list decoding,the performance estimation is derived analytically based on the polar weight spectrum and BLER upper bounds.Theoretical evaluation and numerical simulation results show that the estimated performance can fit well the practical simulated results of RCPC under the objective conditions,verifying the validity of our proposed performance estimation methods.Furthermore,the application designs of the reliability estimation of RCPC are explored,particularly in the advantages of the signal-to-noise(SNR)estimation and throughput efficiency optimization of polar coded hybrid automatic repeat request.
文摘By using Bayesian and multiple Bayesian method, the failure probability, reliability and mean time to failure(MTTF) of series system with cold standby units are estimated. At last, we compare the two estimators by means of Monte_Carlo simulation.
基金co-supported by the Beijing Natural Science Foundation of China (No. 4194074)the National Key R&D Program of China (No. 2017YFC1600605)+1 种基金the Shandong Provincial Natural Science Foundation of China (No. ZR2018BF016)the Beijing Municipal Education Commission Research Program-General Project of China (No. KM201910011011)
文摘Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performance anomalies during the flight process. These failures and anomalies may result in mission interruptions, crashes, and even threats to the lives and property of human beings.Thus, the study of flight reliability problems of multirotors is conductive to the development of the drone industry and has theoretical significance and engineering value. This paper proposes a reliable flight performance assessment method of multirotors based on an Interacting Multiple Model Particle Filter(IMMPF) algorithm and health degree as the performance indicator. First, the multirotor is modeled by the Stochastic Hybrid System(SHS) model, and the problem of reliable flight performance assessment is formulated. In order to solve the problem, the IMMPF algorithm is presented to estimate the real-time probability distribution of hybrid state of the established SHS-based multirotor model, since it can decrease estimation errors compared with the standard interacting multiple model algorithm based on extended Kalman filter. Then, the reliable flight performance is assessed with health degree based on the estimation result. Finally, a case study of a multirotor suffering from sensor anomalies is presented to validate the effectiveness of the proposed method.
文摘Redundant actuator is the key component of Fly-By-Wire (FBW) system in which exists the inherent force fighting among different redundant channels at colligation point, This paper establishes the mathematical model of quad redundant actuator (QRA), investigates the force equalization algorithm and carries out the performance degradation simulation and reliability analysis under the first failure and the second failure. The results indicate that the optimal equalization algorithm can solve the force fighting effectively, and the QRA can operate at degradation performance continuously under the first failure and the second failure. With the dynamic fault tree analysis, this paper calculates the reliability based on the performance of QRA and proves that the redundant actuator has very high reliability and safety.
基金supported by the Key National Science and Technology Special Project on"Hign-Grade CNC Machine Tools and Basic Manufacturing Equipments"(No.2010ZX04014-014)the National Natural Science Foundation of China(No.50875039)the Program for Changjiang Scholars and Innovative Research Team in University
文摘Based on the random perturbation technique for reliability sensitivity design,some realistic reliability-based sensitivity issues are discussed,some of which have a structure of high nonlinear performance functions.Combining the related theories of the moment method of the reliability analysis,the matrix differential,and the Kronecker algebra,the reliability-based sensitivity method based on the perturbation method is modified if the first four moments of random variables are given.Meanwhile,a reliability-based sensitivity computation method is proposed.Some examples are used to show that using this method can effectively improve the accuracy of the reliability-based sensitivity computation and offer a reliable theoretic basis in engineering.
基金supported by Graduate School of National University of Defense Technology, China
文摘Components of electromechanical systems usually contain multiple performance parameters and degrade over time. In previous studies, the reliability of these electromechanical systems was analyzed by the traditional method, and the system reliability was estimated based on the reliability of components and the structures of the systems. The system reliability estimated by the traditional method could not reflect the performance of the systems. A new method is proposed in this paper to analyze the system reliability according to the data of multiple performance degraded processes of components. The performance distribution of a degraded component is obtained by the performance degradation analysis, and then states of the component are defined and corresponding state probabilities are estimated. The universal generating function method is proposed and extended to compute the performance distribution and reliability of the system based on the performances of components. A numerical example illustrates the proposed method. The results of the example show that the proposed method can relate the performance of the system to the performances of components and absolutely reflect the relationship between reliability and performance. Compared with the exact values of the system reliability, the results obtained by the proposed method is almost the same with the exact values, and the results obtained by the traditional method are conservative. The proposed method overcomes the shortcomings of the traditional method and provides a new approach to analyze the reliability of electromechanical systems with degraded components containing multiple performance parameters.
基金This work was supported by National Natural Science Foundation of China(No.51175089)National Natural Science Foundation of Guangdong Province(No.S2013010014018).
文摘The aim of this study is to investigate the performance and reliability of urethral valve driven by ultrasonic-vaporized steam.The performance model of urethral valve is established to analyze the driving and opening/closing performances of urethral valve.The reliability model of urethral valve is obtained,and the reliability simulation algorithm is proposed to calculate the reliability index of urethral valve.The numerical simulation and experimental results show that urethral valve has a good opening/closing performance,the driving performance can be improved by increasing ultrasonic intensity,radiation area and ultrasonic frequency,and the corrosion and aging of driving bags are the weak links of urethral valve.
文摘Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.
基金supported by the National Basic Research and Development Program of China(No.2014CB046402)the National Natural Science Foundation of China(No.51175014)‘‘111" Program of China
文摘Actuation system is a vital system in an aircraft, providing the force necessary to move flight control surfaces. The system has a significant influence on the overall aircraft performance and its safety. In order to further increase already high reliability and safety, Airbus has imple- mented a dissimilar redundancy actuation system (DRAS) in its aircraft. The DRAS consists of a hydraulic actuation system (HAS) and an electro-hydrostatic actuation system (EHAS), in which the HAS utilizes a hydraulic source (HS) to move the control surface and the EHAS utilizes an elec- trical supply (ES) to provide the motion force. This paper focuses on the performance degradation processes and fault monitoring strategies of the DRAS, establishes its reliability model based on the generalized stochastic Petri nets (GSPN), and carries out a reliability assessment considering the fault monitoring coverage rate and the false alarm rate. The results indicate that the proposed reli- ability model of the DRAS, considering the fault and redundancy degradation process and identify monitoring, can express its fault logical relation potential safety hazards.
文摘NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.
文摘Mining blasts may be defined as the use of explosive charges in a controlled manner by following a tightly controlled timing sequence according to an assigned firing order. Changes of timing between charges may result in an altered firing order and failure of the blasting sequence, which can cause high vibration levels, poor fragmentation, and/or an undesirable rock mass movement direction. Despite the importance of timing in determining mine blast results, there exists a lack of methodologies or tools with which to assess performance of a complete blast based on delay type and timing sequence. This document applies reliability engineering principles to evaluate the performance of a mine blast. The analyses are based on test results of the accuracy and precision of electronic and pyrotechnic detonators for typical firing times used in a surface coal mine, but may be applied to a variety of mines and timing scenarios.
基金The National Key Research and Development Program of China(No.2023YFC3805005)Shanghai Municipal Science and Technology Commission Research Program(No.22DZ1201404).
文摘A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.
基金the Center of Lithium Battery Membrane Materials jointly established by School of Chemistry and Chemical Engineering of Huazhong University of Science and Technology and Shenzhen Senior Technology Material Co.Ltd.,the National Natural Science Foundation of China(52020105012,52303084)the Young Scientists Fund of Natural Science Foundation of Hubei Province(2023AFB220)for the support of this work.
文摘The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
基金This work was supported financially by the National Key R&D Program of China(2017YFB0203604)the National Natural Science Foundation of China(11972104,11772077)the Liaoning Revitalization Talents Program(XLYC1807187).
文摘For structures that only the predicted bounds of uncertainties are available,this study proposes a Bayesianmethod to logically evaluate the nonprobabilistic reliability of structures based on multi-ellipsoid convex model and performance test data.According to the given interval ranges of uncertainties,we determine the initial characteristic parameters of a multi-ellipsoid convex set.Moreover,to update the plausibility of characteristic parameters,a Bayesian network for the information fusion of prior uncertainty knowledge and subsequent performance test data is constructed.Then,an updated multi-ellipsoid set with the maximum likelihood of the performance test data can be achieved.The credible non-probabilistic reliability index is calculated based on the Kriging-based surrogate model of the performance function.Several numerical examples are presented to validate the proposed Bayesian updating method.
文摘The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.
文摘The main electrical properties of advanced Silicon On Insulator MOSFETs are addressed. The subthreshold and high field operations are analysed as a function of device architecture. The special SOI parasitic phenomena, such as the floating body potential and temperature, are critically reviewed. The main limitations of submicron MOSFET are comparatively evaluated for various SOI structures. Short channel and hot carrier effects as well as the reliability of the SOI technology are investigated for gate length down to sub\|0 1 micron.