期刊文献+
共找到30,527篇文章
< 1 2 250 >
每页显示 20 50 100
Enabling Intrinsic Antiferroelectricity in Two-dimensional NbOCl_(2):Molecular Dynamics Simulations based on Deep Learning Interatomic Potential
1
作者 Jiawei Mao Yinglu Jia +2 位作者 Gaoyang Gou Shi Liu Xiao Cheng Zeng 《Chinese Physics Letters》 2026年第1期156-178,共23页
Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely orien... Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption. 展开更多
关键词 d monolayers local dipoles nonequivalent sublattices intrinsic antiferroelectricity two dimensional nbocl d antiferroelectricity experimentally accessible shear strainalong molecular dynamics simulations
原文传递
Hybrid CO_(2) thermal system for post-steam heavy oil recovery:Insights from microscopic visualization experiments and molecular dynamics simulations
2
作者 Ning Lu Xiaohu Dong +4 位作者 Haitao Wang Huiqing Liu Zhangxin Chen Yu Li Deshang Zeng 《Energy Geoscience》 2025年第2期233-248,共16页
The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments... The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR. 展开更多
关键词 Heavy oil Hybrid CO_(2)thermal system Microscopic visualization experiment Molecular dynamics simulation Microscopic mechanism
在线阅读 下载PDF
Interrelations Between Socio-economic Development and Environmental Quality:a Simulation Integrating System Dynamics Models with GIS 被引量:4
3
作者 YU Jie BIAN Fuling +1 位作者 PETERSON Jim LI Pingxiang 《Geo-Spatial Information Science》 2005年第3期176-182,共7页
System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability po... System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability policies to practice. This is largely because the challenge of including spatial data has not yet been well met. Potential for adoption of SD and GIS methods in combination is exemplified with the results of a decision-support exercise designed for simulation and prediction of the dynamic inter-relationships between socio-economic development and environmental quality for the "Wen, Pi, Du" county in Sichuan province, southwestern China. 展开更多
关键词 system dynamics GIS dynamic simulation eco-economic system sd model analytic hierarchy process
在线阅读 下载PDF
SCENARIOS SIMULATION OF COUPLING SYSTEM BETWEEN URBANIZATION AND ECO-ENVIRONMENT IN JIANGSU PROVINCE BASED ON SYSTEM DYNAMICS MODEL 被引量:7
4
作者 LIU Yao-bin LI Ren-dong LI Chun-hua 《Chinese Geographical Science》 SCIE CSCD 2005年第3期219-226,共8页
By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implicat... By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eco-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios, and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eco-environment can be realized. 展开更多
关键词 URBANIZATION ECO-ENVIRONMENT system dynamics model simulation Jiangsu Province
在线阅读 下载PDF
DYNAMICS MODEL AND SIMULATION OF FLAT VALVE SYSTEM OF INTERNAL COMBUSTION WATER PUMP 被引量:39
5
作者 Zhang Hongxin Zhang Tiezhu +2 位作者 Wang Yushun Zhao Hong Huo Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期411-414,共4页
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s... The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently. 展开更多
关键词 Check valve simulation dynamics model Internal combustion water pump(ICWP)
在线阅读 下载PDF
Discovery of selective HDAC6 inhibitors driven by artificial intelligence and molecular dynamics simulation approaches 被引量:1
6
作者 Xingang Liu Hao Yang +10 位作者 Xinyu Liu Minjie Mou Jie Liu Wenying Yan Tianle Niu Ziyang Zhang He Shi Xiangdong Su Xuedong Li Yang Zhang Qingzhong Jia 《Journal of Pharmaceutical Analysis》 2025年第8期1860-1872,共13页
Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor ... Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold. 展开更多
关键词 Artificial intelligence Virtual screening Compound-protein interaction Molecular dynamic simulation Selective HDAC6 inhibitor
暂未订购
Modeling and Simulation of Equipment Material Inventory Control Based on System Dynamics 被引量:2
7
作者 WANG Bing CHEN Zhaojie LI Hao 《Journal of Donghua University(English Edition)》 EI CAS 2018年第3期256-260,共5页
The paper discusses how the inventory control of army equipment material runs sytematically under the two-level maintenance system,and establishes the inventory control model based on system dynamics.On the basis of m... The paper discusses how the inventory control of army equipment material runs sytematically under the two-level maintenance system,and establishes the inventory control model based on system dynamics.On the basis of modeling and simulation,the influence of different inventory upper limit on the whole system is studied,and the optimal inventory control mechanism under the model condition is foud.In addition,through the simulation of two replenishment strategies(s,S) and(T,s,S),the advantages and disadvantages and feasibility of each replenishment strategy are analyzed. 展开更多
关键词 inventory control system dynamics equipment material simulation
在线阅读 下载PDF
A Hybrid Simulation-Experimental Method for Deriving Equivalent Dynamic Parameters of O-Ring Support Systems
8
作者 LIU Yi YE He +3 位作者 ZHANG Lingfeng LI Shujia CHEN Ge WANG Yongxing 《Journal of Donghua University(English Edition)》 2025年第4期425-434,共10页
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica... The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus. 展开更多
关键词 O-RING equivalent dynamic parameter forced non-resonance method inverse parameter estimation dynamic simulation
在线阅读 下载PDF
Molecular dynamics simulations of collision cascades in polycrystalline tungsten
9
作者 Lixia Liu Mingxuan Jiang +3 位作者 Ning Gao Yangchun Chen Wangyu Hu Hiuqiu Deng 《Chinese Physics B》 2025年第4期468-476,共9页
Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies ... Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies between 1 keV and 150 keV.The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes.The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries,which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases.The direction of PKA can affect the formation and diffusion pathways of defects.When the PKA direction is perpendicular to the grain boundary,defects preferentially form near the grain boundary regions;by contrast,defects are more inclined to form in the interior of the grains.These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials. 展开更多
关键词 collision cascades molecular dynamics simulations TUNGSTEN POLYCRYSTALLINE
原文传递
Improving the reliability of classical molecular dynamics simulations in battery electrolyte design
10
作者 Xin He Yujie Zhang +5 位作者 Haomiao Li Min Zhou Wei Wang Ruxing Wang Kai Jiang Kangli Wang 《Journal of Energy Chemistry》 2025年第2期34-41,I0002,共9页
Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for... Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for simulating solvation structures.However,mainstream force fields often lack accuracy in describing strong ion-solvent interactions,causing disparities between CMD simulations and experimental observations.Although some empirical methods have been employed in some of the studies to address this issue,their effectiveness has been limited.Our CMD research,supported by quantum chemical calculations and experimental data,reveals that the solvation structure is influenced not only by the charge model but also by the polarization description.Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects.Building on this insight,we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate,ether,and nitrile electrolytes.Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures.This work is expected to provide a more reliable CMD method for electrolyte design,shielding researchers from the pitfalls of erroneous simulation outcomes. 展开更多
关键词 ELECTROLYTE Classical molecular dynamics Solvation structure simulations
在线阅读 下载PDF
Dynamics Simulation and Optimization of Hydraulic Excavator Working Device
11
作者 Dongjun He 《机械工程与设计(中英文版)》 2025年第2期1-6,共6页
The performance and efficiency of hydraulic excavators heavily depend on the design and optimization of their working devices.The working device,which consists of the boom,arm,and bucket,plays a crucial role in determ... The performance and efficiency of hydraulic excavators heavily depend on the design and optimization of their working devices.The working device,which consists of the boom,arm,and bucket,plays a crucial role in determining the machine's digging capacity,stability,and overall operational efficiency.This paper presents a comprehensive study on the dynamics simulation and optimization of hydraulic excavator working devices.The paper outlines the fundamental principles of dynamic modeling,incorporating multi-body dynamics and hydraulic system analysis.It further explores various simulation techniques to evaluate the performance of the working device under varying operational conditions,including load and hydraulic system effects.The study also addresses performance optimization,focusing on multi-objective optimization methods that balance multiple factors such as energy efficiency,speed,and load capacity.Additionally,the paper discusses key factors influencing performance,such as mechanical design,material properties,and operational conditions.The results of the dynamic simulations and optimization analyses demonstrate potential improvements in operational efficiency and system stability,providing a valuable framework for the design and enhancement of hydraulic excavator working devices. 展开更多
关键词 Hydraulic Excavator Working Device Dynamic Modeling Performance Optimization Multi-body dynamics Hydraulic system simulation Design Optimization Multi-objective Optimization Excavator Performance
在线阅读 下载PDF
Impact of Wolbachia-containing mosquito release on dengue control:a systems dynamics approach for health policy development
12
作者 Laura Valentina Bocanegra-Villegas Sandra Patricia Usaquen-Perilla Mauricio Alejandro Gómez-Figueroa 《Global Health Journal》 2025年第4期314-322,共9页
Background:This article examines the impact of the release of Wolbachia-infected population replacement mosquitoes as an innovative strategy for managing and controlling dengue in the Americas,using an approach based ... Background:This article examines the impact of the release of Wolbachia-infected population replacement mosquitoes as an innovative strategy for managing and controlling dengue in the Americas,using an approach based on the system dynamics methodology.The introduction of Wolbachia-carrying mosquitoes aims to reduce dengue transmission by interfering with the reproductive capacity of mosquitoes,thus limiting the spread of the virus.Objective:the objective of this study is to analyze how this intervention affects not only the incidence of dengue but also the health care system,evaluating changes in the demand for medical services and the costs associated with treatment in health care institutions.Specifically,it looks at the cost per visit to an Epidemiologist,a Family Doctor,diagnostic tests,and hospitalization.Methods:the study uses simulation scenarios to model the potential impact of the Wolbachia-based intervention in reducing dengue cases and its associated health and economic burden.The scenarios also assess the optimization of resources and improvements in the health system’s response to epidemic outbreaks.The simulation model utilizes real data from the Americas region to enhance the accuracy and relevance of the results.Conclusion:The results the potential of the release of Wolbachia-carrying mosquitoes to significantly mitigate the health and economic burden of dengue,with a maximum saving of 60.15%in the best simulation scenario.The approach not only highlights scientific innovation but also demonstrates its potential influence on public policy design.The findings support the implementation of sustainable strategies to maximize the benefits of this intervention and ensure its effective integration into public health programs,contributing to better long-term dengue management. 展开更多
关键词 Dengue virus WOLBACHIA Mosquito control system dynamics simulation modeling
暂未订购
A molecular dynamics simulation route towards Eu-doped multi-component transparent spectral conversion glass-ceramics
13
作者 Xiuxia Xu Chenhao Wang +7 位作者 Di Wang Wenyan Zheng Zhiyu Liu Jincheng Du Xusheng Qiao Xianping Fan Zhiyu Wang Guodong Qian 《Journal of Rare Earths》 2025年第1期146-152,I0006,共8页
Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2... Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2):Eu^(2+)doped fluorosilicate glass and to vividly observe the glass microstructure in experiment through traditional trial-and-error glass preparation method.BaF_(2):Eu^(2+)doped fluorosilicate glassceramics with high transparency,and high photoluminescence(PL)performance were predicted,designed and prepared via molecular dynamics(MD)simulation method.By MD simulation prediction,self-organized nanocrystallization was realized to inhibit the abnormal growth of nanocrystals due to[AlO_(4)]tetrahedra formed in the fluoride-oxide interface.The introduction of NaF reduces the effective phonon energy of the glass because Na+will prompt Al^(3+)to migrate from the fluoride phase to the silicate phase and interface.The local environment of Eu^(2+)is optimized by predicting the doping concentration of EuF_(3) and 2 mol%EuF3 is the best concentration in this work.Glass-ceramics sample GC2Eu as spectral conversion layer was successfully applied on organic solar cells to obtain more available visible phonons with a high photoelectric conversion efficiency(PCE).This work confirms the guidance of molecular dynamics simulation methods for fluorosilicate glasses design. 展开更多
关键词 Molecular dynamics simulation Fluorosilicateglass Spectral conversion Organic solarcell RAREEARTHS
原文传递
Influence of Intermolecular Forces and Spatial Effects on the Mechanical Properties of Silicone Sealant by Molecular Dynamics Simulation
14
作者 Wen Qi Yu-Fei Du +2 位作者 Bo-Han Chen Gui-Lei An Chun Lu 《Computers, Materials & Continua》 2025年第11期2763-2780,共18页
In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral ... In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral oil is prone to premature aging,which significantly reduces the mechanical properties of the silicone sealant and severely affects its service life.At the same time,there are few reports on the simulation research of the performance of silicone sealant.In this study,three mixed system models of crosslinking silicone sealant/plasticizer are constructed by the molecular dynamics simulationmethod,and the effect of three influencing factors,namely,crosslinking degree of silicone sealant,plasticizer content and external temperature on the mechanical properties of silicone sealant system is analyzed.The results show that at room temperature,the mechanical properties of the silicone sealant system are enhanced with the increase of its crosslinking degree;At a high crosslinking degree,with the increase of plasticizer content,themechanical properties of the silicone sealant system show an overall decreasing trend.When the methyl silicone oil in the range of 20%,themechanical properties of the silicone sealant appeared tobe a small degree of enhancement;As the temperature increases,the doped mineral oil mechanical properties of silicone sealant declined significantly,while doped with methyl silicone oil silicone sealant and doped with double-ended vinyl silicone oil silicone sealant mechanical properties have better heat resistance.It will provide scientific theoretical guidance for improving and predicting the mechanical properties of silicone sealant. 展开更多
关键词 Silicone sealant molecular dynamic simulation MICROSTRUCTURE mechanical property cross-linking
在线阅读 下载PDF
Influence of Pressure on the Co-nonsolvency Effect of Homopolymer in Solutions:A Molecular Dynamics Simulation Study
15
作者 Zhi-Yuan Wang Xing-Ye Li +4 位作者 Zheng Wang Yu-Hua Yin Run Jiang Peng-Fei Zhang Bao-Hui Li 《Chinese Journal of Polymer Science》 2025年第10期1929-1938,共10页
Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regula... Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents. 展开更多
关键词 Molecular dynamics simulation Mixed solvent Co-nonsolvency PRESSURE Chain conformation
原文传递
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
16
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
Effect of Al_(2)O_(3)/SiO_(2) Ratio on the Structure and Tensile Strength of Glass Fiber by Experiment and Molecular Dynamics Simulation
17
作者 KANG Junfeng XU Zhaozhi +6 位作者 YANG Shengyun KANG Zeyu GAO Wenkai CAO Yi TANG Zhiyao LI Yongyan YUE Yunlong 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1251-1261,共11页
The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamic... The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamics simulation.The results showed that Al^(3+)mainly existed in the form of[AlO_(4)]within the glass network.With the increase of Al/Si ratio,the Si-O-Al linkage gradually became the main connection mode of glass network.The increase of bridging oxygen content and variation of Q^(n) indicated that a higher degree of network polymerization was formed.The tensile strength of the glass fibers obtained through experiments increased from 2653.56 to 2856.83 MPa,which was confirmed by the corresponding molecular dynamics simulation.During the stretching process,the Si-O bonds in the Si-O-Al linkage tended to break regardless of the compositional changes,and the increase of fractured Si-O-Al and Al-O-Al linkage absorbed more energy to resist the destroy. 展开更多
关键词 aluminosilicate glass short-range structure molecular dynamics simulations tensile strength
原文传递
A general simulation with trajectories in Heisenberg picture for quantum non-Markovian dynamics
18
作者 Xinyu Chen Wenlin Li Chong Li 《Communications in Theoretical Physics》 2025年第7期45-53,共9页
We present a general numerical simulation method to solve non-Markovian dynamics of an open quantum system influenced by quantum Brownian motion.Based on the determined memory kernel function,this method enables the r... We present a general numerical simulation method to solve non-Markovian dynamics of an open quantum system influenced by quantum Brownian motion.Based on the determined memory kernel function,this method enables the resolution of non-Markovian dynamics for a wide range of system Hamiltonians and spectral densities.The system dynamics are described by exact integro-differential operator equations without any common approximations and they are simulated in this work by definite-number equations with stochastic initial conditions.This approach ensures the applicability of mature numerical methods and maintains computational complexity that remains largely invariant,even when dealing with more complex models.The high accuracy of our simulation is evident from a comparison with the results obtained from corresponding exact master equations,underscoring the reliability and precision of our method. 展开更多
关键词 non-markovian dynamics open quantum system stochastic simulation approach
原文传递
Unraveling the formation and stabilization of vesicle penetration pore by molecular dynamics simulations
19
作者 Zhi Zheng Mingkun Zhang +2 位作者 Qing Yang Mian Long Shouqin Lü 《Acta Mechanica Sinica》 2025年第7期357-376,共20页
The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.How... The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.However,the related formation dynamics is unclear because of the limitation of experimental techniques.This work developed a new model of intra-vesicular fusion to elaborate the formation and stabilization of penetration pores by employing molecular dynamics simulations,based on simplified spherical lipid vesicle system,and investigated the regulation of membrane lipid composition.Results showed that penetration pore could be successfully formed based on the strategy of membrane fusion.The ease of intra-vesicular fusion and penetration pore formation was closely correlated with the lipid curvature properties,where negative spontaneous curvature of lipids seemed to be unfavorable for intra-vesicle fusion.Furthermore,the inner membrane tension around the pore was much larger than other regions,which governed the penetration pore size and stability.This work provided basic understanding for vesicle penetration pore formation and stabilization mechanisms. 展开更多
关键词 Penetration pore Membrane fusion Membrane tension Molecular dynamics simulation
原文传递
DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing
20
作者 Zhimin Song Zhe Tang +4 位作者 Yu Zhang Yanru Zhou Xiaozheng Duan Yan Du Chong-Bo Ma 《Chinese Chemical Letters》 2025年第10期453-458,共6页
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth... Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity. 展开更多
关键词 Single-atom nanozymes DNA-regulated biosensors Molecular dynamics simulations Colorimetric aptasensing Point-of-care diagnostics
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部