期刊文献+
共找到1,031篇文章
< 1 2 52 >
每页显示 20 50 100
Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System
1
作者 LI Songyang CHEN Wenbo WAN Heng 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期270-279,共10页
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands... Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) model predictive control(MPC) data-driven model predictive control(Ddmpc)
原文传递
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
2
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Cascade explicit tube model predictive controller:application for a multi-robot system
3
作者 Ehsan Soleimani Amirhossein Nikoofard Erfan Nejabat 《Control Theory and Technology》 2025年第2期237-252,共16页
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),... In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain. 展开更多
关键词 Explicit model predictive control(MPC) Tube MPC Cascade controller QUADROTOR Multi-agent system distributed formation control
原文传递
T-S Fuzzy Based Model Predictive Control Method for the Direct Yaw Moment Control System Design
4
作者 Faan Wang Xinqi Liu +3 位作者 Guodong Yin Liwei Xu Jinhao Liang Yanbo Lu 《Chinese Journal of Mechanical Engineering》 2025年第5期379-389,共11页
Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynam... Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge. 展开更多
关键词 distributed drive electric vehicles Direct yaw moment control Lateral stability Robust model predictive control
在线阅读 下载PDF
A three-stage series model predictive torque and flux control system based on fast optimal voltage vector selection for more electric aircraft
5
作者 Zhaoyang FU Lixian PENG +2 位作者 Shuangrui PING Lefei GE Weilin LI 《Chinese Journal of Aeronautics》 2025年第11期315-328,共14页
With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter ... With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments. 展开更多
关键词 Fast optimal voltage vector selection model predictive control Permanent magnet synchronous motor Ripple suppression Switching frequency
原文传递
Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs 被引量:29
6
作者 Zhihao CAI Longhong WANG +2 位作者 Jiang ZHAO Kun WU Yingxun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1037-1056,共20页
The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is... The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method. 展开更多
关键词 distributed model predictive control(MPC) Event-triggered mechanism Formation control Obstacle avoidance Unmanned Aerial Vehicles(UAVs) Virtual Target Guidance(VTG)
原文传递
Finite-Control-Set Model Predictive Control of Permanent Magnet Synchronous Motor Drive Systems——An Overview 被引量:11
7
作者 Teng Li Xiaodong Sun +3 位作者 Gang Lei Zebin Yang Youguang Guo Jianguo Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2087-2105,共19页
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p... Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted. 展开更多
关键词 Computational burden finite control set(FCS) model predictive control(MPC) permanent magnet synchronous motor(PMSM) robust operation switching frequency
在线阅读 下载PDF
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:17
8
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presen... Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presents a distributed model predictive control DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints GRCs, load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints. © 2014 Chinese Association of Automation. 展开更多
关键词 Asynchronous generators Electric control equipment Electric fault currents Electric frequency control Electric load management Electric power systems model predictive control Optimization Press load control WIND Wind turbines
在线阅读 下载PDF
Resilience Against Replay Attacks:A Distributed Model Predictive Control Scheme for Networked Multi-Agent Systems 被引量:5
9
作者 Giuseppe Franzè Francesco Tedesco Domenico Famularo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期628-640,共13页
In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ... In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach. 展开更多
关键词 distributed model predictive control leader-follower networks multi-agent systems replay attacks resilient control
在线阅读 下载PDF
Distributed model predictive control for multiagent systems with improved consistency 被引量:2
10
作者 Shanbi WEI Yi CHAI Baocang DING 《控制理论与应用(英文版)》 EI 2010年第1期117-122,共6页
This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what... This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what its neighbors believe that agent is doing is penalized in the cost function of each agent. At each sampling instant the compatibility constraint of each agent is set tighter than the previous sampling instant. Like the traditional approach, the performance cost is utilized as the Lyapunov function to prove closed-looped stability. The closed-loop stability is guaranteed if the weight matrix for deviation in the cost function are sufficiently large. The proposed distributed control scheme is formulated as quadratic programming with quadratic constraints. A numerical example is given to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 distributed model predictive control dmpc Multiagent systems Compatibility constraint CONSISTENCY
在线阅读 下载PDF
Distributed Model Predictive Control for Networked Plant-wide Systems With Neighborhood Cooperation 被引量:3
11
作者 Ting Bai Shaoyuan Li Yi Zheng 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期108-117,共10页
For large-scale networked plant-wide systems composed by physically(or geographically) divided subsystems, only limited information is available for local controllers on account of region and communication restriction... For large-scale networked plant-wide systems composed by physically(or geographically) divided subsystems, only limited information is available for local controllers on account of region and communication restrictions. Concerning the optimal control problem of such subsystems, a neighbor-based distributed model predictive control(NDMPC) strategy is presented to improve the global system performance. In this scheme, the performance index of local subsystems and that of its neighbors are minimized together in the determination of the optimal control input, which makes the local control decision also beneficial to its neighboring subsystems and further contributes to improving the convergence and control performance of overall system.The stability of the closed-loop system is proved. Moreover, the parameter designing method for distributed synthesis is provided.Finally, the simulation results illustrate the main characteristics and effectiveness of the proposed control scheme. 展开更多
关键词 distributed control model predictive control (MPC) NEIGHBORHOOD COOPERATION plant-wide SYSTEMS
在线阅读 下载PDF
Cascaded Model Predictive Control of Six-phase Permanent Magnet Synchronous Motor with Fault Tolerant Ability 被引量:4
12
作者 Ling Feng Zhaohui Wang +1 位作者 Jianghua Feng Wensheng Song 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期311-319,共9页
In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much ... In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault. 展开更多
关键词 Fault-tolerant control model predictive control Permanent magnet synchronous motor Six-phase motor Weighting factor
在线阅读 下载PDF
Application of distributed model predictive control based on neighborhood optimization in gauge-looper integrated system of tandem hot rolling 被引量:2
13
作者 Jie Sun Fan Hou +5 位作者 Yun-jian Hu Long-jun Wang Hao-yue Jin Wen Peng Xiao-jian Li Dian-hua Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第2期277-292,共16页
To solve the coupling relationship between the strip automatic gauge control and the looper control in traditional control strategy of tandem hot rolling,a distributed model predictive control(DMPC)strategy for the ta... To solve the coupling relationship between the strip automatic gauge control and the looper control in traditional control strategy of tandem hot rolling,a distributed model predictive control(DMPC)strategy for the tandem hot rolling was explored,and a series of simulation experiments were carried out.Firstly,based on the state space analysis method,the multivariable dynamic transition process of hot strip rolling was studied,and the state space model of a gauge-looper integrated system in tandem hot rolling was established.Secondly,DMPC strategy based on neighborhood optimization was proposed,which fully considered the coupling relationship in this integrated system.Finally,a series of experiments simulating disturbances and emergency situations were completed with actual rolling data.The experimental results showed that the proposed DMPC control strategy had better performance compared with the traditional proportional-integral control and centralized model predictive control,which is applicable for the gauge-looper integrated system. 展开更多
关键词 Tandem hot rolling GAUGE Looper integrated system State space model distributed model predictive control Neighborhood optimization
原文传递
DISOPE distributed model predictive control of cascade systems with network communication 被引量:1
14
作者 Yan ZHANG Shaoyuan LI 《控制理论与应用(英文版)》 EI 2005年第2期131-138,共8页
A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the d... A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm. 展开更多
关键词 Cascade systems Dynamic integrated system optimization and parameter estimation (DISOPE) model predictive control (MPC) distributed control system (DCS) Autonomous agents Fossil fuel power unit (FFPU)
在线阅读 下载PDF
Model predictive flux control of permanent magnet synchronous motor driven by three-level inverter based on fine-division strategy 被引量:1
15
作者 MIAO Zhongcui LI Haiyuan +1 位作者 HE Yangyang WANG Yunkun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期439-450,共12页
Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model... Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) three-level inverter model predictive flux control(MPFC) weight coefficient midpoint potential
在线阅读 下载PDF
Model predictive torque control of permanent magnet synchronous motor system driven by matrix converter 被引量:1
16
作者 TENG Qing fang LU Chang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期293-301,共9页
Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conv... Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy. 展开更多
关键词 permanent magnet synchronous motor (PMSM) matrix converter (MC) model predictive torque control (MPTC)
在线阅读 下载PDF
Model Predictive Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) with Online Parameter Estimation Based on Extended Kalman Filter 被引量:1
17
作者 Gang Yang Xiao Jiang Shuaishuai Lv 《International Journal of Communications, Network and System Sciences》 2022年第7期79-93,共15页
Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimati... Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimation based on the extended Kalman filter for PMSM is designed. By predicting the errors of torque and flux based on the model and the current states of the system, the optimal voltage vector is selected to minimize the error of torque and flux. The stator resistance and inductance are estimated online via EKF to reduce the effect of model error and the current estimation can reduce the error caused by measurement noise. The stability of the EKF is proved in theory. The simulation experiment results show the method can estimate the motor parameters, reduce the torque, and flux ripples and improve the performance of direct torque control for permanent magnet synchronous motor (PMSM). 展开更多
关键词 model predictive Direct Torque control Extended Kalman Filter Parameter Estimation Permanent Magnet synchronous Motor Filter’s Stability
在线阅读 下载PDF
Model-based Predictive Control for Spatially-distributed Systems Using Dimensional Reduction Models 被引量:3
18
作者 Meng-Ling Wang Ning Li Shao-Yuan Li 《International Journal of Automation and computing》 EI 2011年第1期1-7,共7页
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ... In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies. 展开更多
关键词 Spatially-distributed system principal component analysis (PCA) time/space separation dimension reduction model predictive control (MPC).
在线阅读 下载PDF
Distributed Model Predictive Control with Actuator Saturation for Markovian Jump Linear System 被引量:2
19
作者 Yan Song Haifeng Lou Shuai Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第4期374-381,共8页
This paper is concerned with the distributed model predictive control (MPC) problem for a class of discrete-time Markovian jump linear systems (MJLSs) subject to actuator saturation and polytopic uncertainty in system... This paper is concerned with the distributed model predictive control (MPC) problem for a class of discrete-time Markovian jump linear systems (MJLSs) subject to actuator saturation and polytopic uncertainty in system matrices. The global system is decomposed into several subsystems which coordinate with each other. A set of distributed controllers is designed by solving a min-max optimization problem in terms of the solutions of linear matrix inequalities (LMIs). An iterative algorithm is developed to achieve the online computation. Finally, a simulation example is employed to show the effectiveness of the proposed algorithm. © 2014 Chinese Association of Automation. 展开更多
关键词 Actuators ALGORITHMS Iterative methods Linear matrix inequalities Linear systems Markov processes Matrix algebra model predictive control Optimization predictive control systems Robustness (control systems)
在线阅读 下载PDF
CBF-Based Distributed Model Predictive Control for Safe Formation of Autonomous Mobile Robots
20
作者 MU Jianbin YANG Haili HE Defeng 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期678-688,共11页
A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed env... A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security. 展开更多
关键词 distributed model predictive control(dmpc) robust control barrier function(RCBF) autonomous mobile robot formation control collision avoidance
原文传递
上一页 1 2 52 下一页 到第
使用帮助 返回顶部