A hybrid Compressed Sensing and Primal-Dual Wavelet(CSP-PDW)technique is proposed for the compression and reconstruction of ECG signals.The compression and reconstruction algorithms are implemented using four key conc...A hybrid Compressed Sensing and Primal-Dual Wavelet(CSP-PDW)technique is proposed for the compression and reconstruction of ECG signals.The compression and reconstruction algorithms are implemented using four key concepts:Sparsifying Basis,Restricted Isometry Principle,Gaussian Random Matrix,and Convex Minimization.In addition to the conventional compression sensing reconstruction approach,wavelet-based processing is employed to enhance reconstruction efficiency.A mathematical model of the proposed algorithm is derived analytically to obtain the essential parameters of compression sensing,including the sparsifying basis,measurement matrix size,and number of iterations required for reconstructing the original signal and determining the type and level of wavelet processing.The low time complexity of the proposed algorithm makes it an ideal candidate for ECG monitoring systems in IoT-based e-healthcare applications.A feature extraction algorithm is also developed to show that the important ECG peaks remain unaltered after reconstruction.The clinical relevance of the reconstructed signal and the efficiency of the developed algorithm are evaluated using four validation parameters at three different compression ratios.展开更多
Data compression is one of the core fields of study for applications of image and video processing.The raw data to be transmitted consumes large bandwidth and requires huge storage space as a result,it is desirable to...Data compression is one of the core fields of study for applications of image and video processing.The raw data to be transmitted consumes large bandwidth and requires huge storage space as a result,it is desirable to represent the information in the data with considerably fewer bits by the mean of data compression techniques,the data must be reconstituted very similarly to the initial form.In this paper,a hybrid compression based on Discrete Cosine Transform(DCT),DiscreteWavelet Transform(DWT)is used to enhance the quality of the reconstructed image.These techniques are followed by entropy encoding such as Huffman coding to give additional compression.Huffman coding is optimal prefix code because of its implementation is more simple,faster,and easier than other codes.It needs less execution time and it is the shortest average length and the measurements for analysis are based upon Compression Ratio,Mean Square Error(MSE),and Peak Signal to Noise Ratio(PSNR).We applied a hybrid algorithm on(DWT–DCT 2×2,4×4,8×8,16×16,32×32)blocks.Finally,we show that by using a hybrid(DWT–DCT)compression technique,the PSNR is reconstructed for the image by using the proposed hybrid algorithm(DWT–DCT 8×8 block)is quite high than DCT.展开更多
A new meaningful image encryption algorithm based on compressive sensing(CS)and integer wavelet transformation(IWT)is proposed in this study.First of all,the initial values of chaotic system are encrypted by RSA algor...A new meaningful image encryption algorithm based on compressive sensing(CS)and integer wavelet transformation(IWT)is proposed in this study.First of all,the initial values of chaotic system are encrypted by RSA algorithm,and then they are open as public keys.To make the chaotic sequence more random,a mathematical model is constructed to improve the random performance.Then,the plain image is compressed and encrypted to obtain the secret image.Secondly,the secret image is inserted with numbers zero to extend its size same to the plain image.After applying IWT to the carrier image and discrete wavelet transformation(DWT)to the inserted image,the secret image is embedded into the carrier image.Finally,a meaningful carrier image embedded with secret plain image can be obtained by inverse IWT.Here,the measurement matrix is built by both chaotic system and Hadamard matrix,which not only retains the characteristics of Hadamard matrix,but also has the property of control and synchronization of chaotic system.Especially,information entropy of the plain image is employed to produce the initial conditions of chaotic system.As a result,the proposed algorithm can resist known-plaintext attack(KPA)and chosen-plaintext attack(CPA).By the help of asymmetric cipher algorithm RSA,no extra transmission is needed in the communication.Experimental simulations show that the normalized correlation(NC)values between the host image and the cipher image are high.That is to say,the proposed encryption algorithm is imperceptible and has good hiding effect.展开更多
文摘A hybrid Compressed Sensing and Primal-Dual Wavelet(CSP-PDW)technique is proposed for the compression and reconstruction of ECG signals.The compression and reconstruction algorithms are implemented using four key concepts:Sparsifying Basis,Restricted Isometry Principle,Gaussian Random Matrix,and Convex Minimization.In addition to the conventional compression sensing reconstruction approach,wavelet-based processing is employed to enhance reconstruction efficiency.A mathematical model of the proposed algorithm is derived analytically to obtain the essential parameters of compression sensing,including the sparsifying basis,measurement matrix size,and number of iterations required for reconstructing the original signal and determining the type and level of wavelet processing.The low time complexity of the proposed algorithm makes it an ideal candidate for ECG monitoring systems in IoT-based e-healthcare applications.A feature extraction algorithm is also developed to show that the important ECG peaks remain unaltered after reconstruction.The clinical relevance of the reconstructed signal and the efficiency of the developed algorithm are evaluated using four validation parameters at three different compression ratios.
文摘Data compression is one of the core fields of study for applications of image and video processing.The raw data to be transmitted consumes large bandwidth and requires huge storage space as a result,it is desirable to represent the information in the data with considerably fewer bits by the mean of data compression techniques,the data must be reconstituted very similarly to the initial form.In this paper,a hybrid compression based on Discrete Cosine Transform(DCT),DiscreteWavelet Transform(DWT)is used to enhance the quality of the reconstructed image.These techniques are followed by entropy encoding such as Huffman coding to give additional compression.Huffman coding is optimal prefix code because of its implementation is more simple,faster,and easier than other codes.It needs less execution time and it is the shortest average length and the measurements for analysis are based upon Compression Ratio,Mean Square Error(MSE),and Peak Signal to Noise Ratio(PSNR).We applied a hybrid algorithm on(DWT–DCT 2×2,4×4,8×8,16×16,32×32)blocks.Finally,we show that by using a hybrid(DWT–DCT)compression technique,the PSNR is reconstructed for the image by using the proposed hybrid algorithm(DWT–DCT 8×8 block)is quite high than DCT.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.61972103,61772371,62172301)the Natural Science Foundation of Guangdong Province of China(2019A1515011361)+2 种基金the Fundamental Research Funds for the Central Universities of China(22120210545)the Key Scientific Research Project of Education Department of Guangdong Province of China(2020ZDZX3064)the Postgraduate Education Innovation Project of Guangdong Ocean University of China(202143).
文摘A new meaningful image encryption algorithm based on compressive sensing(CS)and integer wavelet transformation(IWT)is proposed in this study.First of all,the initial values of chaotic system are encrypted by RSA algorithm,and then they are open as public keys.To make the chaotic sequence more random,a mathematical model is constructed to improve the random performance.Then,the plain image is compressed and encrypted to obtain the secret image.Secondly,the secret image is inserted with numbers zero to extend its size same to the plain image.After applying IWT to the carrier image and discrete wavelet transformation(DWT)to the inserted image,the secret image is embedded into the carrier image.Finally,a meaningful carrier image embedded with secret plain image can be obtained by inverse IWT.Here,the measurement matrix is built by both chaotic system and Hadamard matrix,which not only retains the characteristics of Hadamard matrix,but also has the property of control and synchronization of chaotic system.Especially,information entropy of the plain image is employed to produce the initial conditions of chaotic system.As a result,the proposed algorithm can resist known-plaintext attack(KPA)and chosen-plaintext attack(CPA).By the help of asymmetric cipher algorithm RSA,no extra transmission is needed in the communication.Experimental simulations show that the normalized correlation(NC)values between the host image and the cipher image are high.That is to say,the proposed encryption algorithm is imperceptible and has good hiding effect.