期刊文献+
共找到88,405篇文章
< 1 2 250 >
每页显示 20 50 100
Uniform Attractors for the Kirchhoff Type Suspension Bridge Equation with Nonlinear Damping and Memory Term
1
作者 Ling XU Yanni WANG 《Journal of Mathematical Research with Applications》 2026年第1期71-86,共16页
The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and e... The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method. 展开更多
关键词 uniform attractor Kirchhoff type suspension bridge equation nonlinear damping memory term
原文传递
Enhanced interconnection and damping assignment passivity-based control for PM synchronous motors
2
作者 Mohamed Azzi Lotfi Baghli +2 位作者 Ehsan Jamshidpour Phatiphat Thounthong Noureddine Takorabet 《Global Energy Interconnection》 2025年第4期657-667,共11页
Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonline... Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance. 展开更多
关键词 Hamiltonian energy control Interconnection and damping assignment passivity-based control IDA-PBC Motor drives Permanent-magnet synchronous machine(PMSM) Speed control
在线阅读 下载PDF
Trial-Manufacture and Experimental Study of Particle Damping Boring Bar for Deep Hole Boring of 7075 Aluminum Alloy 被引量:2
3
作者 HUANG Yi HAN Jianxin DONG Qingyun 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期123-136,共14页
7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because... 7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because of its limited machining space,bad environment and large elongation induced low stiffness.To reduce vibration and improve machined surface quality,a particle damping boring bar,filled with particles in its inside damping block,is designed based on the theory of vibration control.The theoretical damping coefficient is determined,then the boring bar structure is designed and trial-manufactured.Experimental studies through impact testing show that cemented carbide particles with a diameter of 5 mm and a filling rate of 70% achieve a damping ratio of 19.386%,providing excellent vibration reduction capabilities,which may reduce the possibility of boring vibration.Then,experiments are setup to investigate its vibration reduction performance during deep hole boring of 7075 aluminum alloy.To observe more obviously,severe working conditions are adopted and carried out to acquire the time domain vibration signal of the head of the boring bar and the surface morphologies and roughness values of the workpieces.By comparing different experimental results,it is found that the designed boring bar could reduce the maximum vibration amplitude by up to 81.01% and the surface roughness value by up to 47.09% compared with the ordinary boring bar in two sets of experiments,proving that the designed boring bar can effectively reduce vibration.This study can offer certain valuable insights for the machining of this material. 展开更多
关键词 7075 aluminum alloy boring bar vibration reduction particle damping
在线阅读 下载PDF
A Review of the Hydrodynamic Damping Characteristics of Blade-like Structures:Focus on the Quantitative Identification Methods and Key Influencing Parameters 被引量:1
4
作者 Yongshun Zeng Zhaohui Qian +1 位作者 Jiayun Zhang Zhifeng Yao 《哈尔滨工程大学学报(英文版)》 2025年第1期21-34,共14页
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev... Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage. 展开更多
关键词 Blade fatigue Hydrodynamic damping ratio Identification method Affecting factors Prediction formula
在线阅读 下载PDF
Improved Strategy of Grid-Forming Virtual Synchronous Generator Based on Transient Damping 被引量:2
5
作者 Lei Zhang Rongliang Shi +2 位作者 Junhui Li Yannan Yu Yu Zhang 《Energy Engineering》 EI 2024年第11期3181-3197,共17页
The grid-forming virtual synchronous generator(GFVSG)not only employs a first-order low-pass filter for virtual inertia control but also introduces grid-connected active power(GCAP)dynamic oscillation issues,akin to t... The grid-forming virtual synchronous generator(GFVSG)not only employs a first-order low-pass filter for virtual inertia control but also introduces grid-connected active power(GCAP)dynamic oscillation issues,akin to those observed in traditional synchronous generators.In response to this,an improved strategy for lead-lag filter based GFVSG(LLF-GFVSG)is presented in this article.Firstly,the grid-connected circuit structure and control principle of typical GFVSG are described,and a closed-loop small-signal model for GCAP in GFVSG is established.The causes of GCAP dynamic oscillation of GFVSG under the disturbances of active power command as well as grid frequency are analyzed.On this basis,the LLF-GFVSG improvement strategy and its parameter design method are given.Finally,the efficiency of the proposed control strategy in damping GCAP dynamic oscillations under various disturbances is verified using MATLAB simulations and experimental comparison results. 展开更多
关键词 Grid-forming virtual synchronous generator first-order low-pass filter lead-lag filter small-signal model parameter design
在线阅读 下载PDF
Review and New Expansion of the Active Damping Strategy of the PMSM Drive System with LC Sine Wave Filter
6
作者 Xiang Wu Yongqi Ji +6 位作者 Chao Li Yongxiang Xu Jibin Zou Lisi Tian Shuo Chen Zhixun Ma Yaofei Han 《CES Transactions on Electrical Machines and Systems》 2025年第3期268-288,共21页
Active damping(AD)strategy is an economical and efficient method to solve the resonant problem of the permanent magnet synchronous motor(PMSM)drive system with inductor-capacitor(LC)sine wave filter.In this article,th... Active damping(AD)strategy is an economical and efficient method to solve the resonant problem of the permanent magnet synchronous motor(PMSM)drive system with inductor-capacitor(LC)sine wave filter.In this article,the AD methods used in PMSM drive system are classified as inherent damping(ID),state variable feedback,and digital filter.Based on this,the purpose of this article is to provide an overview and analysis of the AD methods on PMSM drive system in recent years,and to comprehensively review,compare,and summarize the stability,dynamic performance,robustness,and algorithm complexity.Furthermore,a new expansion of AD method based on capacitor current feedback with high-pass filter(HPF-CCF)is studied to ensure the effectiveness when the resonant frequency is around sixth of the sampling frequency.The simulation and experimental results validate the effectiveness of theoretical analysis. 展开更多
关键词 Permanent magnet synchronous motor(PMSM) LC sine wave filter Active damping(AD) High-pass filter(HPF)
在线阅读 下载PDF
Mechanism of interconnected synchronized switch damping for vibration control of blades
7
作者 Yu FAN Yu HU +1 位作者 Yaguang WU Lin LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期207-228,共22页
The Synchronized Switch Damping(SSD)is regarded as a promising alternative to mitigate the vibration of thin-walled structures in aero-engines,especially for blades or bladed disks.The common manner is to shunt the sw... The Synchronized Switch Damping(SSD)is regarded as a promising alternative to mitigate the vibration of thin-walled structures in aero-engines,especially for blades or bladed disks.The common manner is to shunt the switch circuit independently to a single piezoelectric structure.This paper is aimed at exploring a novel way of using the SSD,i.e.,the SSD is interconnected between two piezoelectric structures or substructures.The damping mechanism,performance,and effective range of the interconnected SSD are studied numerically and experimentally.First,based on a dual cantilever beam finite element model,the time domain and frequency domain modeling and solving methods of the interconnected SSD are deduced and validated.Then,the influence of the amplitude and phase relationship on the damping effect of the interconnected SSD is numerically studied and compared with the shunted SSD.A self-sensing SSD control board is developed,and experimental studies are carried out.The results show that the interconnected SSD establishes an additional energy channel between the corresponding piezoelectric structures.When the amplitudes of the two cantilever beams are different,the interconnected SSD balances the vibration level of each beam.When the amplitudes of the two cantilever beams are the same,if the appropriate interconnection manner is selected according to the phase,the resonance peak can be reduced by more than 30%.When the vibration is in-phase/out-of-phase,the damping generated by the interconnected SSD in a cross/parallel manner is even more significant than the shunted SSD.Furthermore,this novel connection scheme reduces the number of SSD circuits in half.Finally,for engineering applications,we implement the proposed damping technology to the finite element model of a typical dummy bladed disk.A piezoelectric damping ratio of 13.7%is achieved when the amount of piezo material is only 10%of blade mass.Compared with traditional friction dampers,the major advancements of the interconnected SSD are:(A)it can reduce the vibration level of blades without friction interface;(B)the space constraint is overcome,i.e.,the vibration energy is not necessarily dissipated independently in one sector or through physically adjacent blades,and instead,the dissipation and transfer of vibrational energy can be realized between any blade pair.If a specific gating circuit is adopted to adjust the interconnection manner of the SSD,vibration mitigation under variable working conditions with different engine orders will be expected;(C)designers do not need to worry about the annoying nonlinearities related to working conditions anymore. 展开更多
关键词 BLADE Dry friction damping Experiments Finite element method PIEZOELECTRIC synchronized switch damping
原文传递
Analytical Solutions for 1-Dimensional Peridynamic Systems by Considering the Effect of Damping
8
作者 Zhenghao Yang Erkan Oterkus +1 位作者 Selda Oterkus Konstantin Naumenko 《Computer Modeling in Engineering & Sciences》 2025年第5期2491-2508,共18页
For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This ... For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This study develops a novel analytical solution for one-dimensional peridynamic models,considering the effect of damping.After demonstrating the details of the analytical solution,various demonstration problems are presented.First,the free vibration of a damped system is considered for under-damped and critically damped conditions.Peridynamic solutions and results from the classical theory are compared against each other,and excellent agreement is observed between the two approaches.Next,forced vibration analyses of undamped and damped conditions are performed.In addition,the effect of horizon size is investigated.It is shown that for smaller horizon sizes,peridynamic results agree well with classical results,whereas results from these two approaches deviate from each other as the horizon size increases. 展开更多
关键词 PERIDYNAMICS ANALYTICAL damping
在线阅读 下载PDF
Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability during Voltage Dips
9
作者 Shitao Sun Yu Lei +4 位作者 Guowen Hao Yi Lu Jindong Liu Zhaoxin Song Jie Zhang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期143-151,共9页
Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtua... Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method. 展开更多
关键词 Virtual synchronous generator(VSG) Transient damping synchronization stability Voltage dips
在线阅读 下载PDF
Structural vibration control using nonlinear damping amplifier friction vibration absorbers
10
作者 S.CHOWDHURY S.ADHIKARI 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期965-988,共24页
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ... This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads. 展开更多
关键词 damping amplifier friction vibration absorber(DAFVA) compound damping amplifier friction vibration absorber(CDAFVA) nested damping amplifier friction vibration absorber(NDAFVA) levered damping amplifier friction vibration absorber(LDAFVA) H2 and H∞optimization approaches
在线阅读 下载PDF
The Global Attractor of 2D g-Navier- Stokes Equations with Damping and Delay
11
作者 WANG Xiaoxia JIANG Jinping ZHANG Fukun 《Wuhan University Journal of Natural Sciences》 2025年第3期269-275,共7页
In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attra... In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attractor in C_(Hg) is equal to the global attractor in C_(Vg). 展开更多
关键词 global attractor g-Navier-Stokes equation damping DELAY
原文传递
Data-Driven Parametric Design of Additively Manufactured Hybrid Lattice Structure for Stiffness and Wide-Band Damping Performance
12
作者 Chenyang Li Shangqin Yuan +3 位作者 Han Zhang Shaoying Li Xinyue Li Jihong Zhu 《Additive Manufacturing Frontiers》 2025年第2期30-39,共10页
The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies m... The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable. 展开更多
关键词 Hybrid lattice structure DATA-DRIVEN Wide-band damping Machine-learning method
在线阅读 下载PDF
Influence of an Adding Damping Device in a Moonpool on the Heave Motion of a Drilling Ship Part I:Experiment
13
作者 WEI Qi GU Jia-yang +3 位作者 LIU Wei-min LYU Hong-guan TAO Yan-wu HU Fang-xin 《China Ocean Engineering》 2025年第2期191-208,共18页
On the basis of the model tests,this paper explores the coupled hydrodynamic performance of the moonpool and the hull.This study aims to compare and analyze the variation in the hull heave response between the piston ... On the basis of the model tests,this paper explores the coupled hydrodynamic performance of the moonpool and the hull.This study aims to compare and analyze the variation in the hull heave response between the piston resonance state of the moonpool under wave excitation and the non-resonance state of the moonpool under wave-current excitation.A novel damping device specifically designed and fabricated for stepped moonpools has been developed.Before and after the installation of the damping device,the free surface response characteristics of the moonpool and heave motion response characteristics of the hull are compared.The findings show a clear correlation between the current speed and heave response characteristics of the hull.During the seakeeping design phase of the drilling vessel,the current speed is an additional critical factor that cannot be disregarded,alongside the moonpool effect.A correlation exists between the fluid dynamics occurring within the moonpool and the heave motion of the vessel hull.A reduction in the amplitude of the motion of the moonpool water results in a decrease in the heave motion of the hull.This study provides a reference for alleviating the seakeeping of a drill ship’s heave response and enhancing the safety and efficiency of the operation. 展开更多
关键词 heave motion damping device moonpool model test wave-current excitation
在线阅读 下载PDF
Temperature and angle dependence of magnetic damping in manganite thin films
14
作者 Jinghua Ren Yuelin Zhang +7 位作者 Miming Cai Yuhan Li Mingming Li Tianqi Wang Dekun Shen Hongyu Zhou Xiangwei Zhu Jinxing Zhang 《Chinese Physics B》 2025年第10期84-89,共6页
Magnonics and magnonic materials have attracted widespread interest in the spintronics community and demonstrate potential for applications in the next generation of information technology.Recent advances in manganite... Magnonics and magnonic materials have attracted widespread interest in the spintronics community and demonstrate potential for applications in the next generation of information technology.Recent advances in manganite thin films highlight their promise for magnonics,in which enhanced film quality and strain control of spin and electronic structures play a crucial role in reducing magnetic damping.Here,we report the fabrication of La_(0.67)Sr_(0.33)MnO_(3) thin films of varying quality via pulsed laser deposition.The quality of epitaxial films is characterized using atomic force microscopy and x-ray diffraction.A pronounced fourfold anisotropy in the magnetic damping(with a ratio of about 150%)is observed,where the minimum damping occurs along the[110]crystalline orientation.Notably,improved sample quality significantly reduces the magnetic damping at low temperatures.The highest-quality sample,featuring atomic-scale terraces,exhibits a magnetic damping of~2.5×10^(-3)at 5 K.Our results not only demonstrate effective reduction of low-temperature magnetic damping in high-quality correlated oxide systems but also provides a strategy and material platform for exploring novel quantum phenomena and for designing low-temperature magnonic devices. 展开更多
关键词 ferromagnetic resonance correlated manganite thin film magnetic damping
原文传递
Tropical Cyclone Simulations:The Impact of Model Top/Damping Layer and the Role of Stratospheric Gravity Waves
15
作者 Xu WANG Yuan WANG +2 位作者 Lifeng ZHANG Yun ZHANG Jiping GUAN 《Advances in Atmospheric Sciences》 2025年第11期2290-2304,共15页
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh... This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations. 展开更多
关键词 gravity waves STRATOSPHERE tropical cyclones numerical simulations damping layer model top
在线阅读 下载PDF
Global Attractor for the Extensible Beam Equation with Rotational Inertia and Nonlocal Strong Damping
16
作者 Jianming ZHE Tingting LIU 《Journal of Mathematical Research with Applications》 2025年第4期501-512,共12页
The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate ... The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate the existence of the attractor by using the contractive function method and more detailed estimates. 展开更多
关键词 extensible beam equation rotation inertia nonlocal strong damping global attractor
原文传递
High damping capacity of Ni-Mn-Ga-Cu microwires prepared by melt-extraction technique
17
作者 Xue-Xi Zhang Ming-Fang Qian +3 位作者 Guang-Wei Wang Peng-Fei Xu Lin Geng Jian-Fei Sun 《Rare Metals》 2025年第10期7889-7894,共6页
Ni-Mn-Ga-Cu microwires,with diameter of 20-80 μm,length of 30-150 mm and fined columnar grains,were produced by melt-extraction technique.The damping capacity of the extracted micro wires was investigated by stretchi... Ni-Mn-Ga-Cu microwires,with diameter of 20-80 μm,length of 30-150 mm and fined columnar grains,were produced by melt-extraction technique.The damping capacity of the extracted micro wires was investigated by stretching a micro wire under a tensile stress using dynamic mechanical analyzer.The damping capacity of the martensite and austenite phases shows a weak frequency dependence but a strong strain amplitude dependence.The damping capacity(Tanδ) of the martensite and austenite phases reaches 0.08 and 0.04,respectively,under strain amplitude of 0.5% and frequency of 1 Hz.The high damping capacity of the martensite phase is related to the high mobility of martensite twin boudaries,while that of austenite phase to the motion of dislocations.The ferromagnetic Ni-Mn-Ga-Cu micro wires,with high ductility and damping capacity,may act as promising materials for microscale devices,systems and composite fillers for passive dissipation of undesired vibrations and noises. 展开更多
关键词 Shape memory alloys Phase transformation damping capacity Ni-Mn-Ga-Cu alloy
原文传递
800 MPa Fe–Mn alloy with expected damping capacity by coupling grain refinement and ε-martensite introduction
18
作者 Xiao-guang Xie Jun Chen Guang-ming Cao 《Journal of Iron and Steel Research International》 2025年第8期2504-2511,共8页
The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε... The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized. 展开更多
关键词 Fe-Mn alloy ε-martensite Grain refinement Strength damping capacity
原文传递
Effect of Al content on phase evolution,damping capacity,and mechanical properties of Al_(x)CrFe_(3)Ni medium entropy alloys
19
作者 Ning-ning Geng Jiang Li +5 位作者 Wei Zhang Peng Gao Qing-chun Xiang Ying-lei Ren Bo Yu Ke-qiang Qiu 《China Foundry》 2025年第3期345-351,共7页
The phase constitution,microstructure,damping capacity,and mechanical properties of as-cast AlxCrFe3Ni(x=0.5,0.52,0.54,and 0.56,respectively)medium entropy alloys were investigated.It is found that the volume fraction... The phase constitution,microstructure,damping capacity,and mechanical properties of as-cast AlxCrFe3Ni(x=0.5,0.52,0.54,and 0.56,respectively)medium entropy alloys were investigated.It is found that the volume fraction of BCC phase increases while that of FCC decreases with increasing the Al content.When the content of Al is 0.54,the alloy is composed of 82.1vol.%BCC matrix and 17.9vol.%FCC phase.Wherein the FCC phase is distributed on the BCC matrix,forming a structure where the hard BCC matrix is surrounded by soft FCC phase.This results in a hindering effect on the propagation process of vibration waves.The damping performance of Al0.54CrFe_(3)Ni alloy,characterized by an internal friction of Q^(-1) is as high as 0.059,is higher than that of most FeCr damping alloys.The volume fraction of the BCC phase and the peculiar distribution of the FCC phase are identified as the key factors affecting the damping capacity.In addition,the Al0.54CrFe3Ni alloy exhibits a high yield strength of 811.16 MPa. 展开更多
关键词 medium entropy alloys phase constitution damping capacity mechanical properties
在线阅读 下载PDF
Research on Vibration Control of Pump Valve Pipeline System Based on Active Damping Device
20
作者 Hao-zhe Zhu Li-dong He Qing-wang Qin 《风机技术》 2025年第2期78-83,共6页
Pump valve pipeline vibration brings serious safety hazards to the operation of the equipment,for the pump valve system in the process of variable flow,variable speed,variable openings lead to excessive pipeline vibra... Pump valve pipeline vibration brings serious safety hazards to the operation of the equipment,for the pump valve system in the process of variable flow,variable speed,variable openings lead to excessive pipeline vibration.An active damping device(ADD)is used to the vibration of the pump valve pipeline system to apply the control force,to achieve the active control of the pipeline vibration.A pump-valve pipeline vibration test bench was built to compare the control effect of active damping device on pipeline vibration under different pump valve working conditions,and the results show that applying ADD control could effectively suppress the vibration of the pump valve pipeline and enhance the stability of the equipment during operation.At different pump operating rotation frequencies,the vibration amplitude of the pump valve pipeline in working frequency and its multiple frequencies are also effectively suppressed,with the maximum amplitude reduction of more than 60%.For the valve vibration caused by different operating openings,the vibration of the highest reduction of 68%,and the centrifugal pump drive shaft vi-bration reduced by up to 73%,which provides a new idea for vibration control of pump valve pipeline system. 展开更多
关键词 Active damping Device Active Control ACTUATOR Pump Valve Pipeline
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部