期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Synchronization Characterization of DC Microgrid Converter Output Voltage and Improved Adaptive Synchronization Control Methods
1
作者 Wei Chen Xin Gao +2 位作者 Zhanhong Wei Xusheng Yang Zhao Li 《Energy Engineering》 2025年第2期805-821,共17页
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta... This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance. 展开更多
关键词 DC microgrid BIFURCATION small-world network voltage synchronization improved adaptive control
在线阅读 下载PDF
Analysis and synchronization controller design of dual-port gridforming voltage-source converters for different operation modes
2
作者 Shuo Zhang Wei Qiao +1 位作者 Liyan Qu Jun Wang 《iEnergy》 2024年第1期46-58,共13页
Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditi... Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditionally demand different synchronization control techniques,leading to heterogeneous VSCs.It is challenging for the power system to accommodate and coordinate heterogeneous VSCs.A promising universal synchronization control technique for VSCs is the DC-link voltage synchronization control(DVSC)based on a lead compensator(LC).The LC DVSC stabilizes both the DC and AC voltages of a VSC while achieving synchronization with the AC grid.This results in a dual-port grid-forming(DGFM)characteristic for the VSC.However,there has been very limited study on the stability and synchronization controller design of the VSCs with the LC DVSC operating in various modes.To bridge this gap,the paper presents a quantitative analysis on the stability and steady-state performance of the LC DVSC in all three operation modes of the DGFM VSC.Based on the analysis,the paper provides step-by-step design guidelines for the LC DVSC.Furthermore,the paper uncovers an instability issue related to the LC DVSC when the DGFM VSC operates in the balanced mode.To tackle the instability issue,a virtual resistance control is proposed and integrated with the LC DVSC.Simulation results validate the analysis and demonstrate the effectiveness of the DGFM VSC with the LC DVSC designed using the proposed guidelines in all three operation modes.Overall,the paper demonstrates the feasibility of employing the DGFM VSC with the LC DVSC for all three possible operation modes,which can help overcome the challenges associated with accommodating and coordinating heterogeneous VSCs in the power system. 展开更多
关键词 DC-link voltage synchronization control(DVSC) dual-port grid-forming(DGFM)control grid forming(GFM) synchronization stability voltage-source converter(VSC)
暂未订购
An Advanced Teaching Lab for the Setting up of an Islanded Production Unit
3
作者 Andre Hodder Basile Kawkabani 《Journal of Energy and Power Engineering》 2013年第8期1553-1561,共9页
The present paper addresses an advanced teaching lab consisting of setting up an islanded production unit. This teaching lab takes place in the very last semester at master level for students in electrical engineering... The present paper addresses an advanced teaching lab consisting of setting up an islanded production unit. This teaching lab takes place in the very last semester at master level for students in electrical engineering with energy specialization. The purpose of this teaching lab is to combine knowledge learned in different areas such as power electronics, control, electrical machines and networks, and make use of all of them in practice. The present paper describes in detail the different steps followed by the student to set up an islanded production unit. 展开更多
关键词 Teaching laboratory islanded network DC motor speed control synchronous generator voltage control.
在线阅读 下载PDF
Synchronous Voltage Reconstruction of VSC-HVDC Systems Under Weak Grid Conditions
4
作者 Weiye Diao Ao Liu +3 位作者 Jun Mei Linyuan Wang Guanghua Wang Fujin Deng 《Journal of Modern Power Systems and Clean Energy》 2025年第3期1040-1051,共12页
Under weak grid conditions,grid impedance is coupled with a control system for voltage source converter based high-voltage direct current(VSC-HVDC)systems,resulting in decreased synchronization stability.Unfortunately... Under weak grid conditions,grid impedance is coupled with a control system for voltage source converter based high-voltage direct current(VSC-HVDC)systems,resulting in decreased synchronization stability.Unfortunately,most studies are based on the assumption that impedance ratio(R/X)is sufficiently small to ignore the effects of grid impedance.In this study,we establish a dynamic coupling model that includes grid impedance and control loops,revealing the influence mechanism of R/X on synchronization stability from a physical perspective.We also quantify the stability range of R/X in the static analysis model and introduce a sensitivity factor to measure its effect on voltage stability.Additionally,we utilize a dynamic analysis model to evaluate power angle convergence,proposing a corresponding stability criterion.We then present a method of synchronous voltage reconstruction aimed at enhancing the grid strength.Theoretical analysis shows that this method can effectively mitigate the effects of coupling between grid impedance and the controller under weak grid conditions,ensuring stable operation even under extremely weak grid conditions.Experiments validate the accuracy and effectiveness of the analysis and method. 展开更多
关键词 Synchronous voltage reconstruction impedance ratio(R/X) grid impedance weak grid coupling model voltage source converter based high-voltage direct current(VSC-HVDC) grid-following control short-circuit ratio(SCR)
原文传递
Cold-Test Experimental Research of an S-Band Broadband High Power CCTWT
5
作者 李文君 许州 +5 位作者 林郁正 沈旭明 刘婕 陈亚男 黎明 杨兴繁 《Chinese Physics C》 SCIE CAS CSCD 北大核心 2008年第z1期178-180,共3页
Cold-test experiment of an S-band broadband high power coupled-cavity traveling-wave tube(CCTWT)is introduced in this paper.The dispersion characteristic,the synchronous voltage and the interaction impedance of this S... Cold-test experiment of an S-band broadband high power coupled-cavity traveling-wave tube(CCTWT)is introduced in this paper.The dispersion characteristic,the synchronous voltage and the interaction impedance of this S-band CCTWT are measured.The experimental results are in agreement with the numerical simulation values. 展开更多
关键词 coupled-cavity traveling-wave tube cold-test dispersion characteristic interaction impedance synchronous voltage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部