期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Existence and Stability of Synchronizing Solution of Non-Autonomous Equations with Multiple Delays
1
作者 Jinying Wei Yongjun Li Xiaohua Zhuo 《Journal of Applied Mathematics and Physics》 2016年第7期1294-1299,共6页
In this paper, we consider an abstract non-autonomous evolution equation with multiple delays in a Hilbert space H:  u'(t) + Au(t) = F(u(t-r<sub>1</sub><sub></sub>),...,u((t-r<sub&g... In this paper, we consider an abstract non-autonomous evolution equation with multiple delays in a Hilbert space H:  u'(t) + Au(t) = F(u(t-r<sub>1</sub><sub></sub>),...,u((t-r<sub>n</sub><sub></sub>)) + g(t), where A: D(A)?H→H is a positive definite selfadjoint operator,  F: H<sup>n</sup><sub>a</sub> → H is a nonlinear mapping,  r<sub>1</sub>,...,r<sub>n</sub> are nonnegative constants, and  g(t)∈ C(□;H) is bounded. Motivated by [1] [2], we obtain the existence and stability of synchronizing solution under some convergence condition. By this result, we provide a general approach for guaranteeing the existence and stability of periodic, quasiperiodic or almost periodic solution of the equation. 展开更多
关键词 Pullback Attractor Cocycle System STABILITY Synchronizing Solution
在线阅读 下载PDF
Existence and bifurcation of solutions for a double coupled system of Schrdinger equations 被引量:1
2
作者 TIAN RuShun ZHANG ZhiTao 《Science China Mathematics》 SCIE CSCD 2015年第8期1607-1620,共14页
Consider the following system of double coupled Schrodinger equations arising from Bose-Einstein condensates etc., where μ1, μ2 are positive and fixed; κ and β are linear and nonlinear coupling parameters respect... Consider the following system of double coupled Schrodinger equations arising from Bose-Einstein condensates etc., where μ1, μ2 are positive and fixed; κ and β are linear and nonlinear coupling parameters respectively. We first use critical point theory and Liouville type theorem to prove some existence and nonexistence results on the positive solutions of this system. Then using the positive and non-degenerate solution to the scalar equation -△ω + ω = ω3, ω ∈ Hr1(RN), we construct a synchronized solution branch to prove that for/3 in certain range and fixed, there exist a series of bifurcations in product space R×Hr1(RN)×Hr1(RN) with parameter κ, 展开更多
关键词 BIFURCATION system of Schr6dinger equations positive solution synchronized solution branch
原文传递
On the Synchronizable System 被引量:1
3
作者 Zhen LEI Tatsien LI Bopeng RAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2020年第6期821-828,共8页
In this paper,the synchronizable system is defined and studied for a coupled system of wave equations with the same wave speed or with different wave speeds.
关键词 Synchronizable system Synchronization solution Coupled system of wave equations Exact boundary synchronization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部