The transportable optical clock can be deployed in various transportation vehicles,including aviation,aerospace,maritime,and land-based vehicles;provides remote time standards for geophysical monitoring and distribute...The transportable optical clock can be deployed in various transportation vehicles,including aviation,aerospace,maritime,and land-based vehicles;provides remote time standards for geophysical monitoring and distributed coherent sensing;and promotes the unmanned and lightweight development of global time network synchronization.However,the current transportable version of laboratory optical clocks is still limited by factors such as environmental sensitivity,manual maintenance requirements,and high cost.Here we report a single-person portable optical frequency standard using the recently proposed atomic-filter-based laser“Voigt laser”as the local oscillator.It is worth mentioning that due to the inherent characteristics of Voigt lasers,the Voigt optical frequency standard can maintain turn-key functionality under harsh environmental impacts without any manual maintenance requirement.In our experiment,conducted over a duration of 12 min,we subjected the laser diode to multiple temperature shocks,resulting in a cumulative temperature fluctuation of 15℃.Following each temperature shock event,the Voigt optical frequency standard automatically relocked and restored the frequency output.Therefore,this demonstration marks a significant technological breakthrough in automatic quantum devices and might herald the arrival of fully automated time network systems.展开更多
基金Innovation Program for Quantum Science and Technology(2021ZD0303200)National Natural Science Foundation of China(62405007,624B2010)+1 种基金China Postdoctoral Science Foundation(BX2021020)Wenzhou Major Science and Technology Innovation Key Project(ZG2020046)。
文摘The transportable optical clock can be deployed in various transportation vehicles,including aviation,aerospace,maritime,and land-based vehicles;provides remote time standards for geophysical monitoring and distributed coherent sensing;and promotes the unmanned and lightweight development of global time network synchronization.However,the current transportable version of laboratory optical clocks is still limited by factors such as environmental sensitivity,manual maintenance requirements,and high cost.Here we report a single-person portable optical frequency standard using the recently proposed atomic-filter-based laser“Voigt laser”as the local oscillator.It is worth mentioning that due to the inherent characteristics of Voigt lasers,the Voigt optical frequency standard can maintain turn-key functionality under harsh environmental impacts without any manual maintenance requirement.In our experiment,conducted over a duration of 12 min,we subjected the laser diode to multiple temperature shocks,resulting in a cumulative temperature fluctuation of 15℃.Following each temperature shock event,the Voigt optical frequency standard automatically relocked and restored the frequency output.Therefore,this demonstration marks a significant technological breakthrough in automatic quantum devices and might herald the arrival of fully automated time network systems.