期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
NUMERICAL METHOD BASED ON HAMILTON SYSTEM AND SYMPLECTIC ALGORITHM TO DIFFERENTIAL GAMES
1
作者 徐自祥 周德云 邓子辰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期341-346,共6页
The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of s... The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and keep the measure of phase plane. From the viewpoint of Hamilton system, the symplectic characters of linear quadratic differential game were probed; as a try, Symplectic-Runge-Kutta algorithm was presented for the resolution of infinite horizon linear quadratic differential game. An example of numerical calculation was given, and the result can illuminate the feasibility of this method. At the same time, it embodies the fine conservation characteristics of symplectic algorithm to system energy. 展开更多
关键词 differential game Hamilton system algorithm of symplectic geometry linear quadratic
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部