Nine new germacranolides,sylvaticalides A−H(1-9),and three known analogues(10-12)were isolated from the aeri-al part of Vernonia sylvatica.Their structures were established using comprehensive spectroscopic analysis,i...Nine new germacranolides,sylvaticalides A−H(1-9),and three known analogues(10-12)were isolated from the aeri-al part of Vernonia sylvatica.Their structures were established using comprehensive spectroscopic analysis,including high-resolution electrospray ionization mass spectroscopy(HR-ESI-MS)and 1D and 2D nuclear magnetic resonance(NMR)spectra.Their absolute configurations were determined by X-ray diffraction experiments.The anti-inflammatory activities of all isolated compounds were as-sessed by evaluating their inhibitory effects on the nuclear factor kappa B(NF-κB)pathway,which was activated by lipopolysacchar-ide(LPS)-stimulated human THP1-Dual cells,and the interferon-stimulated gene(ISG)pathway,activated by STING agonist MSA-2 in the same cell model.Compounds 1,2 and 6 showed inhibitory effects on the NF-κB and ISG signaling pathways,with IC_(50)values ranging from 4.12 to 10.57μmol·L^(−1).展开更多
ObjectiveTo evaluate the anti-inflammatory, analgesic, antioxidant and acute toxicity of extracts obtained from a successive extraction with solvents of ascending polarity [hexane, hex; chloroform, CHCl<sub>3<...ObjectiveTo evaluate the anti-inflammatory, analgesic, antioxidant and acute toxicity of extracts obtained from a successive extraction with solvents of ascending polarity [hexane, hex; chloroform, CHCl<sub>3</sub> and ethanol (EtOH)] of Ternstroemia sylvatica Schltdl. & Cham.MethodsThe antioxidant potential was evaluated by 2,2 diphenyl-1-picrylhydrazyl, the ferric reducing/antioxidant power assays and by determining the total phenolic content. The anti-inflammatory and antinociceptive effects were evaluated using the in vivo croton oil-induced ear edema, phorbol 12-myristate 13-acetate induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin murine models. The acute toxicity was tested using the Lorke’s method in mice.ResultsThe EtOH extract was the most active for the antioxidant potential tests diphenyl-1-picrylhydrazyl (68.70% inhibition), ferric reducing/antioxidant power [(2 431.30 ± 102.10) mmol Fe<sup>2+</sup> and total polyphenols content (215.80 ± 8.50) meqAG/g]. The anti-inflammatory activity was evaluated by topical application of croton oil (2 mg/ear dose) where the EtOH extract showed the strongest activity compared to the control group (45.13% inhibition), whereas in the phorbol 12-myristate 13-acetate model, at the same dose, the CHCl<sub>3</sub> extract showed the highest inhibition (42.88%). In the carrageenan induced edema model, the EtOH extract showed a stronger inhibition compared to indomethacin (56.34% and 50.70% at doses of 250 and 500 mg/kg of extract, respectively) during the first hour. Similarly, the same extract showed the highest analgesic activity (30.60% inhibition) in the acetic acid contortion assay, and in the formalin test it showed a greater effect with respect to the control group in both phases.ConclusionsOur work confirms the value of Ternstroemia sylvatica as an important anti-inflammatory and analgesic plant, whose mechanism seems to be associated to its antioxidant effects, and supports its uses in the Mexican traditional medicine.展开更多
Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.Howev...Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.However,as nutrients become less available in the soil,the remobilization of nutrients in biomass tissues(plant internal cycling)helps sustain tree nutrition.Our study aims to quantify the impact of Removing Harvest Residues and Litter(RHRL)during five years on tree growth,wood density,and stem wood nutrient concentrations in young beech and oak forest stands.Result:Our study found that,RHRL significantly decreased tree growth ring width by 14%,and wood density by 3%,in beech trees,in near bark rings.RHRL also significantly reduced nutrient concentration in near bark and near pith areas of both studied species.Mg,Na and S were found lower by 44%,76%,and 56%,respectively,in near bark area of beech trees.In near bark area of oak trees,K,Ca,Mg,Na,S,and Fe were lower by 20%,25%,41%,48%,41%,and 16%,respectively.K and Mg concentrations decreased more strongly in near pith area compared to near bark area suggesting internal translocation of these two elements.Conclusion:In beech trees,wood density proved to be an important factor while quantifying the effect of removing harvest residuals on tree growth and biomass.Soil nutrient loss intensified the remobilization of nutrients con-tained in older tree rings(close to the pith)towards newly formed rings(close to bark).In our study,in beech trees,K was found to be the most recycled major nutrient.These results demonstrate the potential of such analysis for providing valuable insight into the effect of RHRL in premature stands on the physiological adaptive strategies of trees and an indication of soil fertility status.展开更多
Species biological history revealed by genetic indicators can provide guidelines for long-term biodiversity conservation in Natura 2000 network. Fagus sylvatica is the keystone species which regulates in the Mediterra...Species biological history revealed by genetic indicators can provide guidelines for long-term biodiversity conservation in Natura 2000 network. Fagus sylvatica is the keystone species which regulates in the Mediterranean Eco-Region ecosystem structure, function and composition. Six hundred fifty nine F. sylvatica individuals have been sampled across 20 sites of European interest in Southern Italy and analyzed at 5 microsatellite loci. For sites marked by both maximum heterozygosity (Ho) and minimum heterozygote deficit (Fis) (IT9210210, ITA070099, IT9210205 and IT9220075) it is suggested to avoid impacts by adopting very conservative measures. Promoting migration processes (pollen flow and seed flow) would be appropriate where it has been monitored low heterozygosity and high genetic disequilibrium. Margin effect due to dryness should be buffered with appropriate belts of thermophilus broad leaved tree species.展开更多
The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European b...The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.展开更多
Background: Coarse woody debris(CWD) is very important for forest ecosystems, particularly for biodiversity and carbon storage. Its relevance as a possible reservoir and source of nutrients is less clear, especially i...Background: Coarse woody debris(CWD) is very important for forest ecosystems, particularly for biodiversity and carbon storage. Its relevance as a possible reservoir and source of nutrients is less clear, especially in central Europe.Methods: Based on a chronosequence of known ages of logs, we analyzed the nutrients stored in CWD of Fagus sylvatica, Picea abies, and Pinus sylvestris at different sites in Germany. To quantify nutrient concentrations, we assessed the use of Near Infrared Reflectance Spectroscopy(NIRS) to determine the chemical properties of CWD.Results: NIRS models were suitable to predict concentrations of C, N, P, lignin and extractives. Concentrations of most nutrients increased with mass loss, with the exception of potassium, which decreased for beech and pine and remained relatively constant for spruce. The highest nutrient concentrations(N, P, S, Ca and Mn, except Mg and K) were generally observed in highly decomposed spruce logs. The net effect of decreasing CWD mass and increasing nutrient concentrations was either a decreasing(N, P and K in beech; P, Mg, K and Mn in pine), constant(S, Ca and Mg in beech; N, S and Ca in pine) or increasing amount of nutrients(N, P, S and Ca in spruce; Mn in beech) in the logsover the course of decomposition. The C/N ratio decreased for all tree species, most markedly for spruce from ca. 1000 at the beginning of the decomposition process to 180 at 36 years. The N/P ratio converged to a value of about 30 forall three species. Lignin concentrations increased for spruce and beech and remained constant for pine.Conclusions: Our results indicate that most nutrients remain in CWD for long periods. Nutrients may be used and cycled by microorganisms within CWD, but with the exception of P(in beech), Mg(in pine) and K(in beech and pine), there appears to be little net nutrient export until two thirds of the mass is lost. Instead, N, P, S and Ca were accumulated in spruce logs, indicating that CWD became a net sink rather than a net source of some nutrients for several decades.展开更多
文摘Nine new germacranolides,sylvaticalides A−H(1-9),and three known analogues(10-12)were isolated from the aeri-al part of Vernonia sylvatica.Their structures were established using comprehensive spectroscopic analysis,including high-resolution electrospray ionization mass spectroscopy(HR-ESI-MS)and 1D and 2D nuclear magnetic resonance(NMR)spectra.Their absolute configurations were determined by X-ray diffraction experiments.The anti-inflammatory activities of all isolated compounds were as-sessed by evaluating their inhibitory effects on the nuclear factor kappa B(NF-κB)pathway,which was activated by lipopolysacchar-ide(LPS)-stimulated human THP1-Dual cells,and the interferon-stimulated gene(ISG)pathway,activated by STING agonist MSA-2 in the same cell model.Compounds 1,2 and 6 showed inhibitory effects on the NF-κB and ISG signaling pathways,with IC_(50)values ranging from 4.12 to 10.57μmol·L^(−1).
文摘ObjectiveTo evaluate the anti-inflammatory, analgesic, antioxidant and acute toxicity of extracts obtained from a successive extraction with solvents of ascending polarity [hexane, hex; chloroform, CHCl<sub>3</sub> and ethanol (EtOH)] of Ternstroemia sylvatica Schltdl. & Cham.MethodsThe antioxidant potential was evaluated by 2,2 diphenyl-1-picrylhydrazyl, the ferric reducing/antioxidant power assays and by determining the total phenolic content. The anti-inflammatory and antinociceptive effects were evaluated using the in vivo croton oil-induced ear edema, phorbol 12-myristate 13-acetate induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin murine models. The acute toxicity was tested using the Lorke’s method in mice.ResultsThe EtOH extract was the most active for the antioxidant potential tests diphenyl-1-picrylhydrazyl (68.70% inhibition), ferric reducing/antioxidant power [(2 431.30 ± 102.10) mmol Fe<sup>2+</sup> and total polyphenols content (215.80 ± 8.50) meqAG/g]. The anti-inflammatory activity was evaluated by topical application of croton oil (2 mg/ear dose) where the EtOH extract showed the strongest activity compared to the control group (45.13% inhibition), whereas in the phorbol 12-myristate 13-acetate model, at the same dose, the CHCl<sub>3</sub> extract showed the highest inhibition (42.88%). In the carrageenan induced edema model, the EtOH extract showed a stronger inhibition compared to indomethacin (56.34% and 50.70% at doses of 250 and 500 mg/kg of extract, respectively) during the first hour. Similarly, the same extract showed the highest analgesic activity (30.60% inhibition) in the acetic acid contortion assay, and in the formalin test it showed a greater effect with respect to the control group in both phases.ConclusionsOur work confirms the value of Ternstroemia sylvatica as an important anti-inflammatory and analgesic plant, whose mechanism seems to be associated to its antioxidant effects, and supports its uses in the Mexican traditional medicine.
基金This work was supported within the XyloDensMap project,INRAE funded by the French Ministry of Agriculture under the convention n°A6.01/2017.
文摘Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.However,as nutrients become less available in the soil,the remobilization of nutrients in biomass tissues(plant internal cycling)helps sustain tree nutrition.Our study aims to quantify the impact of Removing Harvest Residues and Litter(RHRL)during five years on tree growth,wood density,and stem wood nutrient concentrations in young beech and oak forest stands.Result:Our study found that,RHRL significantly decreased tree growth ring width by 14%,and wood density by 3%,in beech trees,in near bark rings.RHRL also significantly reduced nutrient concentration in near bark and near pith areas of both studied species.Mg,Na and S were found lower by 44%,76%,and 56%,respectively,in near bark area of beech trees.In near bark area of oak trees,K,Ca,Mg,Na,S,and Fe were lower by 20%,25%,41%,48%,41%,and 16%,respectively.K and Mg concentrations decreased more strongly in near pith area compared to near bark area suggesting internal translocation of these two elements.Conclusion:In beech trees,wood density proved to be an important factor while quantifying the effect of removing harvest residuals on tree growth and biomass.Soil nutrient loss intensified the remobilization of nutrients con-tained in older tree rings(close to the pith)towards newly formed rings(close to bark).In our study,in beech trees,K was found to be the most recycled major nutrient.These results demonstrate the potential of such analysis for providing valuable insight into the effect of RHRL in premature stands on the physiological adaptive strategies of trees and an indication of soil fertility status.
文摘Species biological history revealed by genetic indicators can provide guidelines for long-term biodiversity conservation in Natura 2000 network. Fagus sylvatica is the keystone species which regulates in the Mediterranean Eco-Region ecosystem structure, function and composition. Six hundred fifty nine F. sylvatica individuals have been sampled across 20 sites of European interest in Southern Italy and analyzed at 5 microsatellite loci. For sites marked by both maximum heterozygosity (Ho) and minimum heterozygote deficit (Fis) (IT9210210, ITA070099, IT9210205 and IT9220075) it is suggested to avoid impacts by adopting very conservative measures. Promoting migration processes (pollen flow and seed flow) would be appropriate where it has been monitored low heterozygosity and high genetic disequilibrium. Margin effect due to dryness should be buffered with appropriate belts of thermophilus broad leaved tree species.
基金the Institute Research Centre for Ecological and Forestry Applications (CREAF) of Barcelona that supported the research by the Spanish “Ministerio de Ciencia e Innovacio'n”(MCIN/AEI/ 10.13039/501100011033) (grant agreement No. PID 2021-126679OBI00)partially supported by MIUR Project (PRIN 2020) between WATER and carbon cycles during droug“Unraveling interactionsht and their impact on water resources and forest and grassland ecosySTEMs in the Mediterranean climate (WATERSTEM)”(Project number: 20202WF53Z),“WAFER”at CNR (Consiglio Nazionale delle Ricerche)+3 种基金Priwitzer et al. (2014) (cod. 2020E52THS)-Research Projects of National Relevance funded by the Italian Ministry of University and Research entitled: “Multi-scale observations to predict Forest response to pollution and climate change”(MULTIFOR, project number: 2020E52THS)funding by the project OptForEU Horizon Europe research and innovation programme under grant agreement No. 101060554the project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4-Call for tender No. 3138 of December 16, 2021, rectified by Decree n.3175 of December 18, 2021 of Italian Ministry of UniversityResearch funded by the European UnionationEU under award Number: Project code CN_00000033–Next Gener, Concession Decree No. 1034 of June 17, 2022 adopted by the Italian Ministry of University and Research, CUP B83C22002930006, Project title“National Biodiversity Future Centre-NBFC”
文摘The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.
基金funded through a grant by the German Science Foundation(DFG-BA 2821/4-1)to J.Bauhus
文摘Background: Coarse woody debris(CWD) is very important for forest ecosystems, particularly for biodiversity and carbon storage. Its relevance as a possible reservoir and source of nutrients is less clear, especially in central Europe.Methods: Based on a chronosequence of known ages of logs, we analyzed the nutrients stored in CWD of Fagus sylvatica, Picea abies, and Pinus sylvestris at different sites in Germany. To quantify nutrient concentrations, we assessed the use of Near Infrared Reflectance Spectroscopy(NIRS) to determine the chemical properties of CWD.Results: NIRS models were suitable to predict concentrations of C, N, P, lignin and extractives. Concentrations of most nutrients increased with mass loss, with the exception of potassium, which decreased for beech and pine and remained relatively constant for spruce. The highest nutrient concentrations(N, P, S, Ca and Mn, except Mg and K) were generally observed in highly decomposed spruce logs. The net effect of decreasing CWD mass and increasing nutrient concentrations was either a decreasing(N, P and K in beech; P, Mg, K and Mn in pine), constant(S, Ca and Mg in beech; N, S and Ca in pine) or increasing amount of nutrients(N, P, S and Ca in spruce; Mn in beech) in the logsover the course of decomposition. The C/N ratio decreased for all tree species, most markedly for spruce from ca. 1000 at the beginning of the decomposition process to 180 at 36 years. The N/P ratio converged to a value of about 30 forall three species. Lignin concentrations increased for spruce and beech and remained constant for pine.Conclusions: Our results indicate that most nutrients remain in CWD for long periods. Nutrients may be used and cycled by microorganisms within CWD, but with the exception of P(in beech), Mg(in pine) and K(in beech and pine), there appears to be little net nutrient export until two thirds of the mass is lost. Instead, N, P, S and Ca were accumulated in spruce logs, indicating that CWD became a net sink rather than a net source of some nutrients for several decades.