期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Smart Bionic Surfaces with Switchable Wettability and Applications
1
作者 Shuyi Li Yuyan Fan +3 位作者 Yan Liu Shichao Niu Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期473-500,共28页
In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the fiel... In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the field of interface wetting.Herein,we review interfacial wetting states related to switchable wettability on superwettable materials,including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability.This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli,which is mainly governed by the transformation of surface chemical composition and geometrical structures.Among that,various external stimuli such as physical stimulation(temperature,light,electric,magnetic,mechanical stress),chemical stimulation(pH,ion,solvent)and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability.Moreover,we also summarize the applications of smart surfaces in different fields,such as oil/water separation,programmable transportation,anti-biofouling,detection and delivery,smart soft robotic etc.Furthermore,current limitations and future perspective in the development of smart wetting surfaces are also given.This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli,so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications. 展开更多
关键词 bionic surfaces external stimuli switchable wettability responsive mechanisms
在线阅读 下载PDF
Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation 被引量:1
2
作者 Xiujuan Chen Yunqiu Liu +5 位作者 Gordon Huang Chunjiang An Renfei Feng Yao Yao Wendy Huang Shuqing Weng 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第12期43-54,共12页
The large number of oily wastewater discharges and oil spills are bringing about severe threats to environment and human health.Corresponding to this challenge,a functional PAA-ZnO-HDTMS flax fiber with UV-induced swi... The large number of oily wastewater discharges and oil spills are bringing about severe threats to environment and human health.Corresponding to this challenge,a functional PAA-ZnO-HDTMS flax fiber with UV-induced switchable wettability was developed for efficient oil-water separation in this study.The developed flax fiber was obtained through PAA grafted polymerization and then ZnO-HDTMS nanocomposite immobilization.The as-prepared PAA-ZnO-HDTMS flax fiber was hydrophobic initially and could be switched to hydrophilic through UV irradiation.Its hydrophobicity could be easily recovered through being stored in dark environment for several days.To optimize the performance of the PAA-ZnO-HDTMS flax fiber,the effects of ZnO and HDTMS concentrations on its switchable wettability were investigated.The optimized PAA-ZnO-HDTMS flax fiber had a large water contact angle(∼130°)in air and an extremely small oil contact angle(∼0°)underwater initially.After UV treatment,the water contact angle was decreased to 30°,while the underwater oil contact angle was increased to more than 150°.Based on this UV-induced switchable wettability,the developed PAA-ZnO-HDTMS flax fiber was applied to remove oil from immiscible oil-water mixtures and oil-in-water emulsion with great reusability for multiple cycles.Thus,the developed flax fiber could be further fabricated into oil barrier or oil sorbent for oil-water separation,which could be an environmentally-friendly alternative in oil spill response and oily wastewater treatment. 展开更多
关键词 Flax fiber switchable wettability ZnO-HDTMS coating Oil-water separation
原文传递
Fabrication of microholes array on titanium foil by a femtosecond laser and a surface's wettability switching 被引量:3
3
作者 Cong Wang Bo Liu +2 位作者 Zhi Luo Kaiwen Ding Ji’an Duan 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第8期79-83,共5页
In this study, an effective method is proposed for controlling a titanium foil surface's wettability. A microholes array series is fabricated on the surface of titanium foil by a femtosecond laser under different ... In this study, an effective method is proposed for controlling a titanium foil surface's wettability. A microholes array series is fabricated on the surface of titanium foil by a femtosecond laser under different laser energy and pulse number. The changes of the titanium surface's morphology are characterized. When placed in a darkroom with high-temperature treatment and immersed in alcohol under UV irradiation, respectively, the femtosecond laser treated surfaces display switchable wettability. It is demonstrated that the changing between Ti-OH and Ti-O prompts the transformation between superhydrophilic and superhydrophobic. Compared with existing reports, the switchable wetting cycle is shortened to 1.5 h. The functional surfaces with switchable wettability have potential applications in oil–water separation and water mist collection. 展开更多
关键词 femtosecond laser titanium foil microholes array switchable wettability
原文传递
Novel robust cellulose-based foam with pH and light dual-response for oil recovery 被引量:2
4
作者 Qian WANG Guihua MENG +3 位作者 Jianning WU Yixi WANG Zhiyong LIU Xuhong GUO 《Frontiers of Materials Science》 SCIE CSCD 2018年第2期118-128,共11页
We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRPo The structure and morphology of adsorpt... We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRPo The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)- based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation (λ〉500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation (λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery. 展开更多
关键词 cellulose-based foam dual-responsive adsorption materials switchable wettability oil recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部