A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main dischar...A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.展开更多
为进一步提升电力电子变压器的功率密度、传输效率和可靠性,提出一种开关管数量较少的单级矩阵式电力电子变压器拓扑结构(single-stage matrix-type solid state transformer,SM-SST)。通过将工频全桥与高频半桥共用滤波电容,减少开关...为进一步提升电力电子变压器的功率密度、传输效率和可靠性,提出一种开关管数量较少的单级矩阵式电力电子变压器拓扑结构(single-stage matrix-type solid state transformer,SM-SST)。通过将工频全桥与高频半桥共用滤波电容,减少开关管及电容的数量。无电解电容的矩阵式拓扑结构,提升系统潜在的可靠性和功率密度,并实现源‒荷瞬态功率平衡,从而消除二次纹波功率,且无需电流控制环即可自主完成单位功率因数矫正(power factor correction,PFC)。此外,分析系统在时变直流母线电压下的零电压开关(zero voltage switch,ZVS)特性。综上所述,所提出的SM-SST具有元件少、功率损耗低和功率密度高的优点。最后,搭建1 kW的试验样机,以验证所提方法的正确性和可行性。展开更多
传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数...传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数学模型,分析并提取电路实现软开关工作状态的关键变量与约束条件,理论上证明所提拓扑的有效性。然后,推导电路中线圈互感和负载阻抗等参数的解析关系式,并基于此提出可保证系统在负载时始终处于最佳工作状态的移相控制策略。该策略通过控制开关管的门极驱动信号相位,使谐振元件内部储存的能量提前或者滞后释放,从而将开关管修正回软开关状态。最后,通过仿真和实验验证所提双向E^(#)型WPT系统的有效性。实验结果表明,所提方法可保证在5~30Ω的负载范围内电路工作在软开关状态,该范围内的电能传输效率峰值达84.3%。展开更多
文摘A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.
文摘为进一步提升电力电子变压器的功率密度、传输效率和可靠性,提出一种开关管数量较少的单级矩阵式电力电子变压器拓扑结构(single-stage matrix-type solid state transformer,SM-SST)。通过将工频全桥与高频半桥共用滤波电容,减少开关管及电容的数量。无电解电容的矩阵式拓扑结构,提升系统潜在的可靠性和功率密度,并实现源‒荷瞬态功率平衡,从而消除二次纹波功率,且无需电流控制环即可自主完成单位功率因数矫正(power factor correction,PFC)。此外,分析系统在时变直流母线电压下的零电压开关(zero voltage switch,ZVS)特性。综上所述,所提出的SM-SST具有元件少、功率损耗低和功率密度高的优点。最后,搭建1 kW的试验样机,以验证所提方法的正确性和可行性。
文摘传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数学模型,分析并提取电路实现软开关工作状态的关键变量与约束条件,理论上证明所提拓扑的有效性。然后,推导电路中线圈互感和负载阻抗等参数的解析关系式,并基于此提出可保证系统在负载时始终处于最佳工作状态的移相控制策略。该策略通过控制开关管的门极驱动信号相位,使谐振元件内部储存的能量提前或者滞后释放,从而将开关管修正回软开关状态。最后,通过仿真和实验验证所提双向E^(#)型WPT系统的有效性。实验结果表明,所提方法可保证在5~30Ω的负载范围内电路工作在软开关状态,该范围内的电能传输效率峰值达84.3%。