射频前端芯片的多功能一体化设计对晶体管模型的功能及其复用能力提出了更高的要求。然而,传统模型无法实现多功能复用,导致模型参数提取步骤多、建模效率低。对此,本文提出了一种基于准物理区划分(Quasi-physical zone division, QPZD...射频前端芯片的多功能一体化设计对晶体管模型的功能及其复用能力提出了更高的要求。然而,传统模型无法实现多功能复用,导致模型参数提取步骤多、建模效率低。对此,本文提出了一种基于准物理区划分(Quasi-physical zone division, QPZD)理论的多功能的器件物理基建模方法,模型具备非线性、噪声和开关特性的表征能力。首先,本文阐述了QPZD的建模原理,分别介绍了基于QPZD的非线性、微波噪声和开关三类单功能模型理论,并基于统一的核心模型方程提出了上述模型的一体化融合方法及其多功能模型架构。其次,介绍了包括自热效应、环境温度效应和陷阱效应在内的色散效应的建模方法。最后,从晶体管在片测试验证和射频前端多功能芯片设计验证两个角度对建立的模型进行了验证。仿真实测对比结果表明,模型的非线性、噪声和开关特性的综合仿真精度大于80.33%。本文的建模方法对多功能射频前端关键芯片的全面和精准设计具有重要的指导意义。展开更多
目前,在寻求最大功率输出的控制方法中,通常采用变频方式使系统工作在谐振点附近。然而,对于大功率感应电能传输(inductive power transfer,IPT)系统来说,开关管的工作频率较低,死区时间相对较长,如果控制不当,会在谐振点附近的死区范...目前,在寻求最大功率输出的控制方法中,通常采用变频方式使系统工作在谐振点附近。然而,对于大功率感应电能传输(inductive power transfer,IPT)系统来说,开关管的工作频率较低,死区时间相对较长,如果控制不当,会在谐振点附近的死区范围内出现电压与电流波形畸变,极易造成开关管的损毁,导致系统停机,从而降低了系统的稳定性能。因此,首先研究在高频逆变电压超前、滞后于原边谐振电流以及谐振点附近情况下谐振变换器的开关特性,分析产生电压与电流波形畸变的机理,通过理论推导给出避免波形畸变的运行条件。最后,通过相位滞后控制策略稳定系统的输出,并搭建25 kW、气隙20 mm的大功率IPT试验平台,通过试验验证理论分析的正确性。展开更多
文摘射频前端芯片的多功能一体化设计对晶体管模型的功能及其复用能力提出了更高的要求。然而,传统模型无法实现多功能复用,导致模型参数提取步骤多、建模效率低。对此,本文提出了一种基于准物理区划分(Quasi-physical zone division, QPZD)理论的多功能的器件物理基建模方法,模型具备非线性、噪声和开关特性的表征能力。首先,本文阐述了QPZD的建模原理,分别介绍了基于QPZD的非线性、微波噪声和开关三类单功能模型理论,并基于统一的核心模型方程提出了上述模型的一体化融合方法及其多功能模型架构。其次,介绍了包括自热效应、环境温度效应和陷阱效应在内的色散效应的建模方法。最后,从晶体管在片测试验证和射频前端多功能芯片设计验证两个角度对建立的模型进行了验证。仿真实测对比结果表明,模型的非线性、噪声和开关特性的综合仿真精度大于80.33%。本文的建模方法对多功能射频前端关键芯片的全面和精准设计具有重要的指导意义。
文摘目前,在寻求最大功率输出的控制方法中,通常采用变频方式使系统工作在谐振点附近。然而,对于大功率感应电能传输(inductive power transfer,IPT)系统来说,开关管的工作频率较低,死区时间相对较长,如果控制不当,会在谐振点附近的死区范围内出现电压与电流波形畸变,极易造成开关管的损毁,导致系统停机,从而降低了系统的稳定性能。因此,首先研究在高频逆变电压超前、滞后于原边谐振电流以及谐振点附近情况下谐振变换器的开关特性,分析产生电压与电流波形畸变的机理,通过理论推导给出避免波形畸变的运行条件。最后,通过相位滞后控制策略稳定系统的输出,并搭建25 kW、气隙20 mm的大功率IPT试验平台,通过试验验证理论分析的正确性。