Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimati...Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
This study presents the design of an erbium-doped fiber laser(EDFL) featuring switchable wavelength intervals achieved through the implementation of cascaded and parallel Lyot filters. The proposed laser system utiliz...This study presents the design of an erbium-doped fiber laser(EDFL) featuring switchable wavelength intervals achieved through the implementation of cascaded and parallel Lyot filters. The proposed laser system utilizes a cascaded and parallel configuration of three Lyot filters, facilitated by a polarization beam splitter(PBS) for branch switching. The transmission properties of the filter are analyzed through theoretical modeling and experimental validation using the transmission matrix method. The experimental results are found to be consistent with the theoretical predictions, demonstrating the effectiveness of the proposed design. By adjusting the polarization controllers(PCs), the proposed laser can switch between wavelength spacings of 0.46 nm, 0.27 nm, and 0.76 nm, with a maximum optical signal-to-noise ratio(OSNR) of 38 d B. However, the stability of the laser with a 0.27 nm spacing is not high due to wavelength competition. Power fluctuation for 0.46 nm and 0.76 nm intervals is less than 0.93 d B and 0.78 d B in 1 h, with wavelength fluctuation less than 0.068 nm and 0.19 nm, respectively. This EDFL has the advantages of simple structure, great flexibility, and switchability, which can be applied to fiber optic sensing, wavelength division multiplexing(WDM) networks, and other fields that require a very flexible light source.展开更多
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us...Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.展开更多
Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford...Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
The phenomena of thermal runaway and accidental deformation due to external stresses in lithium batteries or film capacitors consti-tute their primary failure mechanisms.Therefore,monitoring and early warning of overh...The phenomena of thermal runaway and accidental deformation due to external stresses in lithium batteries or film capacitors consti-tute their primary failure mechanisms.Therefore,monitoring and early warning of overheating or localized strain are of great value for the safe use of lithium batteries or film capacitors;however,this function usually requires a system of multiple complex sensors.The realization of the above multiple hazards using a single sensor for monitoring and alarm functions has not been reported.Here,we exploit the thermally induced conductivity and modulus change during solid-liquid conversion of low melting point polyalloys to modulate the electronic relaxation polariza-tion and interfacial polarization in the composites for dielectric switching,and the reduction of alloy particle spacing during bending/compres-sive strain can be used to generate switchable tunneling effects for insulator-conductor transition.By synergizing dielectric switching and insula-tor-conductor transition,the final flexible thermoplastic polyurethane elastomer/low-melting-point polyalloy composite film achieves the func-tional integration of multi-level overheating warning and small deformation monitoring.展开更多
We demonstrated a new type of MAX phase material,chromium titanium aluminum carbide(Cr_(2)TiAlC_(2)) polymer film,to generate a passively Q-switched erbium-doped fiber laser(EDFL).The film thickness was measured to be...We demonstrated a new type of MAX phase material,chromium titanium aluminum carbide(Cr_(2)TiAlC_(2)) polymer film,to generate a passively Q-switched erbium-doped fiber laser(EDFL).The film thickness was measured to be around 45 μm,which was fabricated using the embedding method with polyvinyl alcohol(PVA) polymer as hoster.The saturable absorber(SA) film demonstrates a dual-wavelength passively Q-switched EDFL which operates at 1 531 nm and 1 560.19 nm,respectively.The Q-switching pulse duration could be varied from 2.46 μs to 770 ns,while the repetition rate varied from 92.76 kHz to 106.6 kHz with an increasing input pumping range from 154 mW to 300 mW.The maximum output power and pulse energy of 15.05 mW and 141.18 nJ were obtained at the maximum input power of 300 mW,respectively.展开更多
Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of h...Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of hydrogel electrolytes seriously hinder their development.Inspired by the hardness conversion of sea cucumber skin,a conductivity and mechanics dual-tunable salt gel electrolyte is successfully designed.The salt gel presents a reversible switching of conductors-insulators and a mechanical regulation between softness and hardness via the dissolution-crystallization transition of sodium acetate trihydrate(SAT).Meanwhile,the salt gels spontaneously grow a layer of“armor”through saturated phase-change salt crystals effectively reducing water evaporation of hydrogel electrolytes.Furthermore,this phase-change soft-rigid conversion strategy will expand the capabilities of gel-based flexible supercapacitors(area capacitance:258.6 mF cm^(-2)),and the capacitance retention rate could still reach 86.9%after 3000 cycles at high temperatures.Moreover,the salt gel supercapacitor is potentially used in over-heat alarm systems.It is anticipated that the strategy of conductivity and mechanics of dual-tunable salt gel would provide a new perspective on the development of energy storage devices,wearable electronics,and flexible robots.展开更多
Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
With the rapid advancement of 5G communication technology,increasingly stringent demands are placed on the performance and functionality of phase change switches.Given that RF and microwave signals exhibit characteris...With the rapid advancement of 5G communication technology,increasingly stringent demands are placed on the performance and functionality of phase change switches.Given that RF and microwave signals exhibit characteristics of high frequency,high speed,and high precision,it is imperative for phase change switches to possess fast,accurate,and reliable switching capabilities.Moreover,wafer-level compositional homogeneity and resistivity uniformity during semiconductor manufacturing are crucial for ensuring the yield and reliability of RF switches.By controlling magnetron sputter of GeTe through from four key parameters(pressure,power,Ar flow,and post-annealing)and incorporating elemental proportional compensation in the target,we achieved effective modulation over GeTe uniformity.Finally,we successfully demonstrated the process integration of GeTe phase-change RF switches on 6-inch scaled wafers.展开更多
Background : SOX6 has been shown to play a crucial role in the development of the cardiovascular system. However, its potential role in hypertension and vascular function remains unclear. Methods : In vascular smooth ...Background : SOX6 has been shown to play a crucial role in the development of the cardiovascular system. However, its potential role in hypertension and vascular function remains unclear. Methods : In vascular smooth muscle cells(VSMCs), we employed gain-and loss-offunction approaches combined with RNA sequencing, autophagy flux assessment, and phenotype characterization. Additionally, we established a mouse model with Sox6 overexpression via adeno-associated virus 2(AAV2) to validate the findings in vivo. Results : We validated the increased expression of SOX6 in hypertension both in vitro and in vivo. Genetic silencing of Sox6 in VSMCs attenuated the phenotypic switching induced by angiotensin Ⅱ. Conversely, in vivo overexpression of Sox6 led to a significant elevation in blood pressure and promoted vascular remodeling. Mechanistically, SOX6 was shown to regulate phenotypic switching via an autophagydependent pathway. Specifically, Sox6 overexpression augmented VSMC autophagy and facilitated phenotypic switching, whereas Sox6 knockdown yielded opposite outcomes. Modulation of autophagy using 3-MA or RAPA could effectively counteract the effect mediated by SOX6. Conclusions : Our findings revealed that SOX6 regulates VSMC plasticity and elevates blood pressure by activating autophagy. Therefore, SOX6 inhibition potentially represents a novel strategy for treating hypertension and vascular remodeling.展开更多
The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced elec...The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)展开更多
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s...This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Flexible circuit switches have been widely used in electronic devices due to their outstanding flexibility and operability.In order to expand the types of flexible circuit switch materials,we develop a unique composit...Flexible circuit switches have been widely used in electronic devices due to their outstanding flexibility and operability.In order to expand the types of flexible circuit switch materials,we develop a unique composite material,which integrates a photoresponsive flexible substrate derived from a photoreactive coordination polymer(CP)with an elastic conductive adhesive tape(CAT)in this work.The photoreactive CP{[Cd(2,6-bpvn)(3,5-DBB)_(2)]·DMF}_(n)(1)is prepared through solvothermal reaction of Cd(NO_(3))_(2)·4H_(2)O with 2,6-bis((E)-2-(pyridin-4-yl)vinyl)naphthalene(2,6-bpvn)and 3,5-dibromobenzoic acid(3,5-HDBB).Upon irradiation with UV light,crystals of 1 can undergo[2+2]photocycloaddition reaction and exhibit photomechanical movements.The crystalline powder of 1 can be uniformly distributed in polyvinyl alcohol(PVA)to generate the composite film 1-PVA.After pasting a piece of CAT on the surface of a 1-PVA film,a conductive two-layer film of 1-PVA/CAT can be fabricated.This film bends rapidly upon UV light exposure,connecting the circuit and causing the bulb to light up.When the light source is removed,it reverts to its initial state and the circuit is disconnected and the bulb is extinguished.This process can be cycled at least 100 times,achieving precise turn-on and turn-off performances of the photocontrollable circuit switch.展开更多
The thermal switch plays a crucial role in regulating system temperature,protecting devices from overheating,and improving energy efficiency.Achieving a high thermal switching ratio is essential for its practical appl...The thermal switch plays a crucial role in regulating system temperature,protecting devices from overheating,and improving energy efficiency.Achieving a high thermal switching ratio is essential for its practical application.In this study,by utilizing first-principles calculations and semi-classical Boltzmann transport theory,it is found that hole doping with an experimentally achievable concentration of 1.83×10^(14)cm^(-2)can reduce the lattice thermal conductivity of monolayer MoS_(2) from 151.79 W·m^(-1)·K^(-1)to 12.19 W·m^(-1)·K^(-1),achieving a high thermal switching ratio of 12.5.The achieved switching ratio significantly surpasses previously reported values,including those achieved by extreme strain methods.This phenomenon mainly arises from the enhanced lattice anharmonicity,which is primarily contributed by the S atoms.These results indicate that hole doping is an effective method for tuning the lattice thermal conductivity of materials,and demonstrate that monolayer MoS_(2) is a potential candidate material for thermal switches.展开更多
The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the ...The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods.展开更多
The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine ...The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine and leveraging the strong anti-interference and high sensitivity characteristics of vibration signals,we proposed a VMD-SDP-CNN(Variational mode decomposition-Symmetric dot pattern-Convolutional neural network)fault diagnosis method based on switch machine vibration signals.Firstly,the vibration signal of the switch machine was decomposed by VMD to obtain several intrinsic mode function(IMF)components.Secondly,the SDP method was employed to transform the decomposed IMF components into two-dimensional images,and the issue of one-dimensional signal recognition was transformed into the issue of two-dimensional image recognition.Finally,a CNN was used to realize the fault diagnosis of the switch machine.The experimental results showed that the recognition accuracy of the five actual working conditions of the switch machine using this method was superior to that of typical deep learning and machine learning methods,verifying its practicability and effectiveness.展开更多
With increasing density and heterogeneity in unlicensed wireless networks,traditional MAC protocols,such as Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA)in Wi-Fi networks,are experiencing performance...With increasing density and heterogeneity in unlicensed wireless networks,traditional MAC protocols,such as Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA)in Wi-Fi networks,are experiencing performance degradation.This is manifested in increased collisions and extended backoff times,leading to diminished spectrum efficiency and protocol coordination.Addressing these issues,this paper proposes a deep-learning-based MAC paradigm,dubbed DL-MAC,which leverages spectrum data readily available from energy detection modules in wireless devices to achieve the MAC functionalities of channel access,rate adaptation,and channel switch.First,we utilize DL-MAC to realize a joint design of channel access and rate adaptation.Subsequently,we integrate the capability of channel switching into DL-MAC,enhancing its functionality from single-channel to multi-channel operations.Specifically,the DL-MAC protocol incorporates a Deep Neural Network(DNN)for channel selection and a Recurrent Neural Network(RNN)for the joint design of channel access and rate adaptation.We conducted real-world data collection within the 2.4 GHz frequency band to validate the effectiveness of DL-MAC.Experimental results demonstrate that DL-MAC exhibits significantly superior performance compared to traditional algorithms in both single and multi-channel environments,and also outperforms single-function designs.Additionally,the performance of DL-MAC remains robust,unaffected by channel switch overheads within the evaluation range.展开更多
基金supported by the National Natural Science Foundation of China(61833005)
文摘Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金supported by the Primary Research and Development Plan of Zhejiang Province (No.2023C03014)the Key Research and Development Program of Zhejiang Province (No.2022C03037)。
文摘This study presents the design of an erbium-doped fiber laser(EDFL) featuring switchable wavelength intervals achieved through the implementation of cascaded and parallel Lyot filters. The proposed laser system utilizes a cascaded and parallel configuration of three Lyot filters, facilitated by a polarization beam splitter(PBS) for branch switching. The transmission properties of the filter are analyzed through theoretical modeling and experimental validation using the transmission matrix method. The experimental results are found to be consistent with the theoretical predictions, demonstrating the effectiveness of the proposed design. By adjusting the polarization controllers(PCs), the proposed laser can switch between wavelength spacings of 0.46 nm, 0.27 nm, and 0.76 nm, with a maximum optical signal-to-noise ratio(OSNR) of 38 d B. However, the stability of the laser with a 0.27 nm spacing is not high due to wavelength competition. Power fluctuation for 0.46 nm and 0.76 nm intervals is less than 0.93 d B and 0.78 d B in 1 h, with wavelength fluctuation less than 0.068 nm and 0.19 nm, respectively. This EDFL has the advantages of simple structure, great flexibility, and switchability, which can be applied to fiber optic sensing, wavelength division multiplexing(WDM) networks, and other fields that require a very flexible light source.
基金support from the Beijing Natural Science Foundation-Xiaomi Innovation Joint Fund(No.L233009)National Natural Science Foundation of China(NSFC Nos.62422409,62174152,and 62374159)from the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020115).
文摘Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.
基金supported in part by the Universitat Politècnica de València under grant PAID-10-21supported through AMRITA Seed Grant(Proposal ID:ASG2022188)。
文摘Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金financially supported by the National Natural Science Foundation of China (No.51503158)Key R&D Program of Hubei Province (No.2023BAB104)Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province(No.PLN2024-08)
文摘The phenomena of thermal runaway and accidental deformation due to external stresses in lithium batteries or film capacitors consti-tute their primary failure mechanisms.Therefore,monitoring and early warning of overheating or localized strain are of great value for the safe use of lithium batteries or film capacitors;however,this function usually requires a system of multiple complex sensors.The realization of the above multiple hazards using a single sensor for monitoring and alarm functions has not been reported.Here,we exploit the thermally induced conductivity and modulus change during solid-liquid conversion of low melting point polyalloys to modulate the electronic relaxation polariza-tion and interfacial polarization in the composites for dielectric switching,and the reduction of alloy particle spacing during bending/compres-sive strain can be used to generate switchable tunneling effects for insulator-conductor transition.By synergizing dielectric switching and insula-tor-conductor transition,the final flexible thermoplastic polyurethane elastomer/low-melting-point polyalloy composite film achieves the func-tional integration of multi-level overheating warning and small deformation monitoring.
文摘We demonstrated a new type of MAX phase material,chromium titanium aluminum carbide(Cr_(2)TiAlC_(2)) polymer film,to generate a passively Q-switched erbium-doped fiber laser(EDFL).The film thickness was measured to be around 45 μm,which was fabricated using the embedding method with polyvinyl alcohol(PVA) polymer as hoster.The saturable absorber(SA) film demonstrates a dual-wavelength passively Q-switched EDFL which operates at 1 531 nm and 1 560.19 nm,respectively.The Q-switching pulse duration could be varied from 2.46 μs to 770 ns,while the repetition rate varied from 92.76 kHz to 106.6 kHz with an increasing input pumping range from 154 mW to 300 mW.The maximum output power and pulse energy of 15.05 mW and 141.18 nJ were obtained at the maximum input power of 300 mW,respectively.
基金National Natural Science Foundation of China(No.52303144)Department of Science and Technology of Jilin Province(Nos YDZJ202301ZYTS295 and 20230508188RC)。
文摘Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of hydrogel electrolytes seriously hinder their development.Inspired by the hardness conversion of sea cucumber skin,a conductivity and mechanics dual-tunable salt gel electrolyte is successfully designed.The salt gel presents a reversible switching of conductors-insulators and a mechanical regulation between softness and hardness via the dissolution-crystallization transition of sodium acetate trihydrate(SAT).Meanwhile,the salt gels spontaneously grow a layer of“armor”through saturated phase-change salt crystals effectively reducing water evaporation of hydrogel electrolytes.Furthermore,this phase-change soft-rigid conversion strategy will expand the capabilities of gel-based flexible supercapacitors(area capacitance:258.6 mF cm^(-2)),and the capacitance retention rate could still reach 86.9%after 3000 cycles at high temperatures.Moreover,the salt gel supercapacitor is potentially used in over-heat alarm systems.It is anticipated that the strategy of conductivity and mechanics of dual-tunable salt gel would provide a new perspective on the development of energy storage devices,wearable electronics,and flexible robots.
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
基金supported by the National Natural Science Foundation of China(General Program,No.52473331).
文摘With the rapid advancement of 5G communication technology,increasingly stringent demands are placed on the performance and functionality of phase change switches.Given that RF and microwave signals exhibit characteristics of high frequency,high speed,and high precision,it is imperative for phase change switches to possess fast,accurate,and reliable switching capabilities.Moreover,wafer-level compositional homogeneity and resistivity uniformity during semiconductor manufacturing are crucial for ensuring the yield and reliability of RF switches.By controlling magnetron sputter of GeTe through from four key parameters(pressure,power,Ar flow,and post-annealing)and incorporating elemental proportional compensation in the target,we achieved effective modulation over GeTe uniformity.Finally,we successfully demonstrated the process integration of GeTe phase-change RF switches on 6-inch scaled wafers.
基金Beijing Nova Program,Grant/Award Number:20230484842National Natural Science Foundation of China,Grant/Award Number:82470461。
文摘Background : SOX6 has been shown to play a crucial role in the development of the cardiovascular system. However, its potential role in hypertension and vascular function remains unclear. Methods : In vascular smooth muscle cells(VSMCs), we employed gain-and loss-offunction approaches combined with RNA sequencing, autophagy flux assessment, and phenotype characterization. Additionally, we established a mouse model with Sox6 overexpression via adeno-associated virus 2(AAV2) to validate the findings in vivo. Results : We validated the increased expression of SOX6 in hypertension both in vitro and in vivo. Genetic silencing of Sox6 in VSMCs attenuated the phenotypic switching induced by angiotensin Ⅱ. Conversely, in vivo overexpression of Sox6 led to a significant elevation in blood pressure and promoted vascular remodeling. Mechanistically, SOX6 was shown to regulate phenotypic switching via an autophagydependent pathway. Specifically, Sox6 overexpression augmented VSMC autophagy and facilitated phenotypic switching, whereas Sox6 knockdown yielded opposite outcomes. Modulation of autophagy using 3-MA or RAPA could effectively counteract the effect mediated by SOX6. Conclusions : Our findings revealed that SOX6 regulates VSMC plasticity and elevates blood pressure by activating autophagy. Therefore, SOX6 inhibition potentially represents a novel strategy for treating hypertension and vascular remodeling.
基金supported by research grants of the Iran National Science Foundation(INSF)under grant No.98002866。
文摘The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)
文摘This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.
基金support from the National Natural Science Foundation of China(No.U24A20507,22271203)the State Key Laboratory of Organometallic Chemistry,Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences(No.2024KF005)Open Research Fund of State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering of Nanjing University and the Collaborative Innovation Centre of Suzhou Nano Science and Technology.
文摘Flexible circuit switches have been widely used in electronic devices due to their outstanding flexibility and operability.In order to expand the types of flexible circuit switch materials,we develop a unique composite material,which integrates a photoresponsive flexible substrate derived from a photoreactive coordination polymer(CP)with an elastic conductive adhesive tape(CAT)in this work.The photoreactive CP{[Cd(2,6-bpvn)(3,5-DBB)_(2)]·DMF}_(n)(1)is prepared through solvothermal reaction of Cd(NO_(3))_(2)·4H_(2)O with 2,6-bis((E)-2-(pyridin-4-yl)vinyl)naphthalene(2,6-bpvn)and 3,5-dibromobenzoic acid(3,5-HDBB).Upon irradiation with UV light,crystals of 1 can undergo[2+2]photocycloaddition reaction and exhibit photomechanical movements.The crystalline powder of 1 can be uniformly distributed in polyvinyl alcohol(PVA)to generate the composite film 1-PVA.After pasting a piece of CAT on the surface of a 1-PVA film,a conductive two-layer film of 1-PVA/CAT can be fabricated.This film bends rapidly upon UV light exposure,connecting the circuit and causing the bulb to light up.When the light source is removed,it reverts to its initial state and the circuit is disconnected and the bulb is extinguished.This process can be cycled at least 100 times,achieving precise turn-on and turn-off performances of the photocontrollable circuit switch.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104145 and 12374040)。
文摘The thermal switch plays a crucial role in regulating system temperature,protecting devices from overheating,and improving energy efficiency.Achieving a high thermal switching ratio is essential for its practical application.In this study,by utilizing first-principles calculations and semi-classical Boltzmann transport theory,it is found that hole doping with an experimentally achievable concentration of 1.83×10^(14)cm^(-2)can reduce the lattice thermal conductivity of monolayer MoS_(2) from 151.79 W·m^(-1)·K^(-1)to 12.19 W·m^(-1)·K^(-1),achieving a high thermal switching ratio of 12.5.The achieved switching ratio significantly surpasses previously reported values,including those achieved by extreme strain methods.This phenomenon mainly arises from the enhanced lattice anharmonicity,which is primarily contributed by the S atoms.These results indicate that hole doping is an effective method for tuning the lattice thermal conductivity of materials,and demonstrate that monolayer MoS_(2) is a potential candidate material for thermal switches.
文摘The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods.
基金supported by Scientific Research Project of the Education Department of Liaoning Province(No.JYTMS20230008)Scientific Research Project of Transportation Department of Liaoning Province(No.202320).
文摘The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine and leveraging the strong anti-interference and high sensitivity characteristics of vibration signals,we proposed a VMD-SDP-CNN(Variational mode decomposition-Symmetric dot pattern-Convolutional neural network)fault diagnosis method based on switch machine vibration signals.Firstly,the vibration signal of the switch machine was decomposed by VMD to obtain several intrinsic mode function(IMF)components.Secondly,the SDP method was employed to transform the decomposed IMF components into two-dimensional images,and the issue of one-dimensional signal recognition was transformed into the issue of two-dimensional image recognition.Finally,a CNN was used to realize the fault diagnosis of the switch machine.The experimental results showed that the recognition accuracy of the five actual working conditions of the switch machine using this method was superior to that of typical deep learning and machine learning methods,verifying its practicability and effectiveness.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB1714100in part by the Shenzhen Science and Technology Program,China,under Grant JCYJ20220531101015033.
文摘With increasing density and heterogeneity in unlicensed wireless networks,traditional MAC protocols,such as Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA)in Wi-Fi networks,are experiencing performance degradation.This is manifested in increased collisions and extended backoff times,leading to diminished spectrum efficiency and protocol coordination.Addressing these issues,this paper proposes a deep-learning-based MAC paradigm,dubbed DL-MAC,which leverages spectrum data readily available from energy detection modules in wireless devices to achieve the MAC functionalities of channel access,rate adaptation,and channel switch.First,we utilize DL-MAC to realize a joint design of channel access and rate adaptation.Subsequently,we integrate the capability of channel switching into DL-MAC,enhancing its functionality from single-channel to multi-channel operations.Specifically,the DL-MAC protocol incorporates a Deep Neural Network(DNN)for channel selection and a Recurrent Neural Network(RNN)for the joint design of channel access and rate adaptation.We conducted real-world data collection within the 2.4 GHz frequency band to validate the effectiveness of DL-MAC.Experimental results demonstrate that DL-MAC exhibits significantly superior performance compared to traditional algorithms in both single and multi-channel environments,and also outperforms single-function designs.Additionally,the performance of DL-MAC remains robust,unaffected by channel switch overheads within the evaluation range.