In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of mul...In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensat...A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensation of the delays and packet dropouts. The adverse impacts of communication errors are effectively reduced by a novel delay compensation scheme, where the feedback signal and the control command are compensated in each control period in the central controller and the swing motor driver, respectively, without requiring additional network bandwidth. The recursive least-squares algorithm with forgetting factor algorithm is employed to identify the time-varying model parameters due to pose variation, and a reverse correction law is embedded into the feedback compensation in consecutive packet dropout scenarios to overcome the impacts of the model error. Simulations and practical experiments are conducted. The results show that the proposed fault-tolerant strategy can effectively reduce the communication-error-induced overshoot and response time variation.展开更多
In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol...In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol))four-stage pressure equalization was developed in this article.The model adopts a composite adsorption bed of activated carbon and zeolite 5 A.In this article,pressure variation,temperature field and separation performance are stimulated,and also effect of providing purge(PP)differential pressure and the ratio of activated carbon to zeolite 5 A on separation performance in the process of producing industrial hydrogen(CO content in hydrogen is 10μl·L^(-1))and fuel cell hydrogen(CO content is 0.2μl·L^(-1))are compared.The results show that Run 3,when the CO content in hydrogen is 10μl·L^(-1),the hydrogen recovery is 89.8%,and the average flow rate of feed gas is 0.529 mol·s^(-1);When the CO content in hydrogen is 0.2μl·L^(-1),the hydrogen recovery is 85.2%,and the average flow rate of feed gas is 0.43 mol·s^(-1).With the increase of PP differential pressure,hydrogen recovery first increases and then decreases,reaching the maximum when PP differential pressure is 0.263 MPa;With the decrease of the ratio of activated carbon to zeolite 5 A,the hydrogen recovery increases gradually.When the CO content in hydrogen is 0.2μl·L^(-1) the hydrogen recovery increases more obviously,from 83.96%to 86.37%,until the ratio of activated carbon to zeolite 5 A decreases to 1.At the end of PP step,no large amount of CO_(2) in gas or solid phase enters the zeolite 5 A adsorption bed,while when the CO content in hydrogen is 10μl·L^(-1),and the ratio of carbon to zeolite 5 A is less than 1.4,more CO_(2) will enter the zeolite 5 A bed.展开更多
Offshore cranes are widely applied to transfer largescale cargoes and it is challenging to develop effective control for them with sea wave disturbances. However, most existing controllers can only yield ultimate unif...Offshore cranes are widely applied to transfer largescale cargoes and it is challenging to develop effective control for them with sea wave disturbances. However, most existing controllers can only yield ultimate uniform boundedness or asymptotical stability results for the system's equilibrium point, and the state variables' convergence time cannot be theoretically guaranteed. To address these problems, a nonlinear sliding mode-based controller is suggested to accurately drive the boom/rope to their desired positions. Simultaneously, payload swing can be eliminated rapidly with sea waves. As we know, this paper firstly presents a controller by introducing error-related bounded functions into a sliding surface, which can realize boom/rope positioning within a finite time, and both controller design and analysis based on the nonlinear dynamics are implemented without any linearization manipulations. Moreover, the stability analysis is theoretically ensured with the Lyapunov method. Finally, we employ some experiments to validate the effectiveness of the proposed controller.展开更多
Consciousness is the gene of resistance that drives evolution by the evolutionary method-empathic Qualia, the subjective perturbation of “natural selection”, and the choice of which is not limited but stress-resista...Consciousness is the gene of resistance that drives evolution by the evolutionary method-empathic Qualia, the subjective perturbation of “natural selection”, and the choice of which is not limited but stress-resistant to mistakes. Looking into the mirror of ourselves, we bring evolution itself to the mirror, which, without blinking, looks with the eye of a frightened gazelle-incredulously-temptingly. Swinging it with a blow to a blow, taking a lunge and reflecting as the shine of slided comet, translating outrage into joy, the most closed resonant system-consciousness works. It is important not to miss any “punch”(knock/sound/word) that is thrown into your consciousness, so that the sound of the universe (and it is she who sends impulses of understanding) turns into improvisation of your own thinking-becoming a landing from “personal Idaho state”, so that the “muscles” of consciousness pumping iron-training do not sleep like a big earthworm that digested fast food (alimentary, cultured), being content with very little and chafing to empty, in order to work, interpreting what is happening near and around you, and comprehend creatively. The cohesion of eidos is so great that thought literally gains weight-you not only get tired quickly in the process of any “thinking”, but you feel that literally the world with weights hangs in your pockets, throwing a couple of blocks with houses and household on your shoulders. And this is all a consequence of the cohesion and microcoupling of all perceptions that revolve in your mind, touching them democratically: with fluids, resonating with waves of meanings, retransmitting impulses of images, and swaddling with the resulting introjections as by current-already according to Maxwell. Let us leave the God of God, art-skillful, and consciousness-seesaw swing of meanings.展开更多
Swing nose crossings(SNXs)have been widely used in heavy haul railways to create a smoother load transfer and hence reduced impact load.However,the current design of SNXs hasn’t been fully examined under heavy haul o...Swing nose crossings(SNXs)have been widely used in heavy haul railways to create a smoother load transfer and hence reduced impact load.However,the current design of SNXs hasn’t been fully examined under heavy haul operating conditions.Additionally,maintenance guidelines for SNX wear-related issues in Australian heavy haul railways are relatively lacking.As such,this study aims to investigate the dynamic response of the wheel-rail contact and analyse the wear performance of an SNX currently used in Australian heavy haul railways.Dynamic implicit-explicit finite element analysis was conducted to simulate the wheel-rail contact along the SNX.The distribution of the wear intensity over the SNX was identified by using a local contact-based wear model.The influence of various scenarios on wear was also explored.The results verify the improved dynamic performance of the SNX,as the increased contact force after load transfer remains below 1.2 times the static load.The findings also indicate that the decrease in relative height and increase in nose rail inclination result in greater wear on the nose rail.Notably,the SNX considered in the current study exhibits better wear performance when used with moderately worn wheels.展开更多
This study delves into the optimization of the methanol-vinyl acetate(VAC)azeotrope separation process via pressure swing distillation(PSD),along with an evaluation of its energy-saving potential.The methanol-VAC syst...This study delves into the optimization of the methanol-vinyl acetate(VAC)azeotrope separation process via pressure swing distillation(PSD),along with an evaluation of its energy-saving potential.The methanol-VAC system,a polar azeotro pe highly susceptible to pressure variations,presents notable separation complexities in polyvinyl alcohol production.Aspen Plus simulations were utilized to assess the feasibility of PSD,with particular emphasis on critical process parameters such as the number of theoretical plates,feed position,reflux ratio,and sidestream extraction location.The results indicate that PSD demonstrates remarkable efficacy in separating methanol and VAC,achieving purities of 99.88%and 99.73%respectively.When compared to extractive distillation,PSD achieves a reduction of 9.07 t·h^(-1)in steam consumption and minimizes wastewater generation by 20.77 t·h^(-1).Furthermore,the economic assessment reveals a 7.91%decrease in the total annual cost associated with PSD.This study not only provides theoretical insights but also offers practical guidance for the design of energyefficient and sustainable separation processes.Future research will focus on extending the analysis to encompass multi-pressure scenarios,further enhancing the applicability and robustness of the findings.展开更多
A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe t...A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.展开更多
This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equation...This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.展开更多
基金supported by the Changsha Major Science and Technology Plan Project,China(No.kq2207002)the Natural Science Foundation of Hunan Province(No.2023JJ40720)the Postgraduate Innovative Project of Central South University,China(No.2022XQLH058)。
文摘In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金the National Natural Science Foundation of China (Nos. 51475414, 51475422, and 51521064) and the National Basic Research Program (973) of China (No. 2013CB035405)
文摘A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensation of the delays and packet dropouts. The adverse impacts of communication errors are effectively reduced by a novel delay compensation scheme, where the feedback signal and the control command are compensated in each control period in the central controller and the swing motor driver, respectively, without requiring additional network bandwidth. The recursive least-squares algorithm with forgetting factor algorithm is employed to identify the time-varying model parameters due to pose variation, and a reverse correction law is embedded into the feedback compensation in consecutive packet dropout scenarios to overcome the impacts of the model error. Simulations and practical experiments are conducted. The results show that the proposed fault-tolerant strategy can effectively reduce the communication-error-induced overshoot and response time variation.
文摘In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol))four-stage pressure equalization was developed in this article.The model adopts a composite adsorption bed of activated carbon and zeolite 5 A.In this article,pressure variation,temperature field and separation performance are stimulated,and also effect of providing purge(PP)differential pressure and the ratio of activated carbon to zeolite 5 A on separation performance in the process of producing industrial hydrogen(CO content in hydrogen is 10μl·L^(-1))and fuel cell hydrogen(CO content is 0.2μl·L^(-1))are compared.The results show that Run 3,when the CO content in hydrogen is 10μl·L^(-1),the hydrogen recovery is 89.8%,and the average flow rate of feed gas is 0.529 mol·s^(-1);When the CO content in hydrogen is 0.2μl·L^(-1),the hydrogen recovery is 85.2%,and the average flow rate of feed gas is 0.43 mol·s^(-1).With the increase of PP differential pressure,hydrogen recovery first increases and then decreases,reaching the maximum when PP differential pressure is 0.263 MPa;With the decrease of the ratio of activated carbon to zeolite 5 A,the hydrogen recovery increases gradually.When the CO content in hydrogen is 0.2μl·L^(-1) the hydrogen recovery increases more obviously,from 83.96%to 86.37%,until the ratio of activated carbon to zeolite 5 A decreases to 1.At the end of PP step,no large amount of CO_(2) in gas or solid phase enters the zeolite 5 A adsorption bed,while when the CO content in hydrogen is 10μl·L^(-1),and the ratio of carbon to zeolite 5 A is less than 1.4,more CO_(2) will enter the zeolite 5 A bed.
基金supported by the National Key Research and Development Program of China(2018YFB1309000)the National Natural Science Foundation of China(61873134,U1706228)+1 种基金the Young Elite Scientists Sponsorship Program by Tianjin(TJSQNTJ-2017-02)the Tianjin Research Innovation Project for Postgraduate Students(2019YJSB070)。
文摘Offshore cranes are widely applied to transfer largescale cargoes and it is challenging to develop effective control for them with sea wave disturbances. However, most existing controllers can only yield ultimate uniform boundedness or asymptotical stability results for the system's equilibrium point, and the state variables' convergence time cannot be theoretically guaranteed. To address these problems, a nonlinear sliding mode-based controller is suggested to accurately drive the boom/rope to their desired positions. Simultaneously, payload swing can be eliminated rapidly with sea waves. As we know, this paper firstly presents a controller by introducing error-related bounded functions into a sliding surface, which can realize boom/rope positioning within a finite time, and both controller design and analysis based on the nonlinear dynamics are implemented without any linearization manipulations. Moreover, the stability analysis is theoretically ensured with the Lyapunov method. Finally, we employ some experiments to validate the effectiveness of the proposed controller.
文摘Consciousness is the gene of resistance that drives evolution by the evolutionary method-empathic Qualia, the subjective perturbation of “natural selection”, and the choice of which is not limited but stress-resistant to mistakes. Looking into the mirror of ourselves, we bring evolution itself to the mirror, which, without blinking, looks with the eye of a frightened gazelle-incredulously-temptingly. Swinging it with a blow to a blow, taking a lunge and reflecting as the shine of slided comet, translating outrage into joy, the most closed resonant system-consciousness works. It is important not to miss any “punch”(knock/sound/word) that is thrown into your consciousness, so that the sound of the universe (and it is she who sends impulses of understanding) turns into improvisation of your own thinking-becoming a landing from “personal Idaho state”, so that the “muscles” of consciousness pumping iron-training do not sleep like a big earthworm that digested fast food (alimentary, cultured), being content with very little and chafing to empty, in order to work, interpreting what is happening near and around you, and comprehend creatively. The cohesion of eidos is so great that thought literally gains weight-you not only get tired quickly in the process of any “thinking”, but you feel that literally the world with weights hangs in your pockets, throwing a couple of blocks with houses and household on your shoulders. And this is all a consequence of the cohesion and microcoupling of all perceptions that revolve in your mind, touching them democratically: with fluids, resonating with waves of meanings, retransmitting impulses of images, and swaddling with the resulting introjections as by current-already according to Maxwell. Let us leave the God of God, art-skillful, and consciousness-seesaw swing of meanings.
基金supported by Australia Research Council through the Linkage Project(Grant No.LP200100110).
文摘Swing nose crossings(SNXs)have been widely used in heavy haul railways to create a smoother load transfer and hence reduced impact load.However,the current design of SNXs hasn’t been fully examined under heavy haul operating conditions.Additionally,maintenance guidelines for SNX wear-related issues in Australian heavy haul railways are relatively lacking.As such,this study aims to investigate the dynamic response of the wheel-rail contact and analyse the wear performance of an SNX currently used in Australian heavy haul railways.Dynamic implicit-explicit finite element analysis was conducted to simulate the wheel-rail contact along the SNX.The distribution of the wear intensity over the SNX was identified by using a local contact-based wear model.The influence of various scenarios on wear was also explored.The results verify the improved dynamic performance of the SNX,as the increased contact force after load transfer remains below 1.2 times the static load.The findings also indicate that the decrease in relative height and increase in nose rail inclination result in greater wear on the nose rail.Notably,the SNX considered in the current study exhibits better wear performance when used with moderately worn wheels.
基金financial support from the National Key Research and Development Program of China(2022YFC2106300)the National Nature Science Foundation of China(U2267226)。
文摘This study delves into the optimization of the methanol-vinyl acetate(VAC)azeotrope separation process via pressure swing distillation(PSD),along with an evaluation of its energy-saving potential.The methanol-VAC system,a polar azeotro pe highly susceptible to pressure variations,presents notable separation complexities in polyvinyl alcohol production.Aspen Plus simulations were utilized to assess the feasibility of PSD,with particular emphasis on critical process parameters such as the number of theoretical plates,feed position,reflux ratio,and sidestream extraction location.The results indicate that PSD demonstrates remarkable efficacy in separating methanol and VAC,achieving purities of 99.88%and 99.73%respectively.When compared to extractive distillation,PSD achieves a reduction of 9.07 t·h^(-1)in steam consumption and minimizes wastewater generation by 20.77 t·h^(-1).Furthermore,the economic assessment reveals a 7.91%decrease in the total annual cost associated with PSD.This study not only provides theoretical insights but also offers practical guidance for the design of energyefficient and sustainable separation processes.Future research will focus on extending the analysis to encompass multi-pressure scenarios,further enhancing the applicability and robustness of the findings.
文摘A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.
文摘This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.