With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monit...With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.展开更多
Wearable devices have received tremendous interests in human sweat analysis in the past few years.However,the widely used polymeric substrates and the layer-by-layer stacking structures greatly influence the cost-effi...Wearable devices have received tremendous interests in human sweat analysis in the past few years.However,the widely used polymeric substrates and the layer-by-layer stacking structures greatly influence the cost-efficiency,conformability and breathability of the devices,further hindering their practical applications.Herein,we report a facile and low-cost strategy for the fabrication of a skin-friendly thread/paper-based wearable system consisting of a sweat reservoir and a multi-sensing component for simultaneous in situ analysis of sweat pH and lactate.In the system,hydrophilic silk thread serves as the micro-channel to guide the liquid flow.Filter papers were functionalized to prepare colorimetric sensors for lactate and pH.The smartphone-based quantitative analysis shows that the sensors are sensitive and reliable.Although pH may interfere the lactate detection,the pH detected simultaneously could be employed to correct the measured data for the achievement of a precise lactate level.After being integrated with a hydrophobic arm guard,the system was successfully used for the on-body measurement of pH and lactate in the sweats secreted from the volunteers.This low-cost,easy-to-fabricate,light-weight and flexible thread/paper-based microfluidic sensing device may hold great potentials as a wearable system in human sweat analysis and point-of-care diagnostics.展开更多
基金supported by the National Natural Science Foundation of China(62201243)Fundamental and Applied Research Grant of Guangdong Province(2021A1515110627)+3 种基金Southern University of Science and Technology(Y01796108,Y01796208)RGC Senior Research Fellow Scheme of Hong Kong(SRFS2122-5S04)the Hong Kong Polytechnic University(1-ZVQM),RI-Wear of PolyU(1-CD44)Shenzhen Science and Technology Innovation Committee(SGDX20210823103403033).
文摘With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.
基金supported by Chongqing Natural Science Foundation(cstc2019jcyj-msxmX0314)Fundamental Research Funds for the Central Universities(XDJK2019B002)Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices.
文摘Wearable devices have received tremendous interests in human sweat analysis in the past few years.However,the widely used polymeric substrates and the layer-by-layer stacking structures greatly influence the cost-efficiency,conformability and breathability of the devices,further hindering their practical applications.Herein,we report a facile and low-cost strategy for the fabrication of a skin-friendly thread/paper-based wearable system consisting of a sweat reservoir and a multi-sensing component for simultaneous in situ analysis of sweat pH and lactate.In the system,hydrophilic silk thread serves as the micro-channel to guide the liquid flow.Filter papers were functionalized to prepare colorimetric sensors for lactate and pH.The smartphone-based quantitative analysis shows that the sensors are sensitive and reliable.Although pH may interfere the lactate detection,the pH detected simultaneously could be employed to correct the measured data for the achievement of a precise lactate level.After being integrated with a hydrophobic arm guard,the system was successfully used for the on-body measurement of pH and lactate in the sweats secreted from the volunteers.This low-cost,easy-to-fabricate,light-weight and flexible thread/paper-based microfluidic sensing device may hold great potentials as a wearable system in human sweat analysis and point-of-care diagnostics.