期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles 被引量:9
1
作者 Mohammad Pourmahmood Aghababa Mohammad Hossein Amrollahi Mehdi Borjkhani 《Journal of Marine Science and Application》 2012年第3期378-386,共9页
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa... In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account. 展开更多
关键词 path planning autonomous underwater vehicle genetic algorithm (GA) particle swarmoptimization (PSO) ant colony optimization (ACO) collision avoidance
在线阅读 下载PDF
Inverse identification of constitutive parameters of Ti_2AlNb intermetallic alloys based on cooperative particle swarm optimization 被引量:5
2
作者 Linjiang HE Honghua SU +1 位作者 Jiuhua XU Liang ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1774-1785,共12页
Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in... Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in aeronautic and automotive engines due to its excellent mechanical properties and high strength retention at elevated temperature. The aim of this work is to present a fast and reliable methodology of inverse identification of constitutive model parameters directly from cutting experiments. FE-machining simulations implemented with a modified Johnson-Cook(TANH) constitutive model are performed to establish the robust link between observables and constitutive parameters. A series of orthogonal cutting experiments with varied cutting parameters is carried out to allow an exact comparison to the 2 D FE-simulations. A cooperative particle swarm optimization algorithm is developed and implemented into the Matlab programs to identify the enormous constitutive parameters. Results show that the simulation observables(i.e., cutting forces, chip morphologies, cutting temperature) implemented with the identified optimal material constants have high consistency with those obtained from experiments,which illustrates that the FE-machining models using the identified parameters obtained from the proposed methodology could be predicted in a close agreement to the experiments. Considering the wide range of the applied unknown parameters number, the proposed inverse methodology of identifying constitutive equations shows excellent prospect, and it can be used for other newly developed metal materials. 展开更多
关键词 Constitutive parameters Cooperative particle swarmoptimization Finite element modelling Inverse identification Ti2A1Nb intermetallic alloys
原文传递
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation 被引量:4
3
作者 GAO Hong-yuan CAO Jin-long 《Journal of Central South University》 SCIE EI CAS 2013年第7期1878-1888,共11页
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed... In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO. 展开更多
关键词 cognitive radio spectrum allocation multi-objective optimization non-dominated sorting quantum particle swarmoptimization benchmark function
在线阅读 下载PDF
Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection 被引量:4
4
作者 Ali E.Takieldeen El-Sayed M.El-kenawy +1 位作者 Mohammed Hadwan Rokaia M.Zaki 《Computers, Materials & Continua》 SCIE EI 2022年第7期1465-1481,共17页
Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the effi... Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the efficiency of the proposed algorithm,DTO is tested and compared to the algorithms of Particle Swarm Optimization(PSO),Whale Optimization Algorithm(WOA),Grey Wolf Optimizer(GWO),and Genetic Algorithm(GA)based on the seven unimodal benchmark functions.Then,ANOVA and Wilcoxon rank-sum tests are performed to confirm the effectiveness of the DTO compared to other optimization techniques.Additionally,to demonstrate the proposed algorithm’s suitability for solving complex realworld issues,DTO is used to solve the feature selection problem.The strategy of using DTOs as feature selection is evaluated using commonly used data sets from the University of California at Irvine(UCI)repository.The findings indicate that the DTO outperforms all other algorithms in addressing feature selection issues,demonstrating the proposed algorithm’s capabilities to solve complex real-world situations. 展开更多
关键词 Metaheuristic optimization swarmoptimization feature selection function optimization
在线阅读 下载PDF
Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm 被引量:1
5
作者 Danlei Chen Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第10期412-422,共11页
Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted s... Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted simplifications to confine problem scale from being too large at the cost of reducing solution space.This study established an optimization framework for the simultaneous optimization of RS and HEN.Firstly,A more comprehensive and compact model was developed to guarantee a relatively complete solution space while reducing model scale as well as its solving difficulty.In this model,a tandem arrangement of connecting sub-coolers and expansion valves was considered in the superstructure;and the pressure/temperature levels were optimized as continuous variables.On this basis,we proposed a"two-step transformation method"to equivalently transform the cross-level structure into a no n-cross-level structu re,and the de-redundant superstructu re was established with ensuring comprehensiveness and rigor.Furthermore,the MINLP model was developed and solved by Particle Swarm Optimization algorithm.Finally,our methodology was validated to get better optimal results with less CPU time in two case studies,an ethylene RS in an existing plant and a reported propylene RS. 展开更多
关键词 Refrigeration system Optimal design Process systems Particle swarmoptimization Mathematical modeling
在线阅读 下载PDF
PV Power Short-Term Forecasting Model Based on the Data Gathered from Monitoring Network 被引量:1
6
作者 ZHONG Zhifeng TAN Jianjun +1 位作者 ZHANG Tianjin ZHU Linlin 《China Communications》 SCIE CSCD 2014年第A02期61-69,共9页
The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from... The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications. 展开更多
关键词 grid-connected PV plant short-termpower generation prediction particle swarmoptimization BP neural network
在线阅读 下载PDF
A novel robust approach for SLAM of mobile robot
7
作者 马家辰 张琦 马立勇 《Journal of Central South University》 SCIE EI CAS 2014年第6期2208-2215,共8页
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ... The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach. 展开更多
关键词 mobile robot simultaneous localization and mapping (SLAM) improved FastSLAM 2.0 H∞ filter particle swarmoptimization (PSO)
在线阅读 下载PDF
Fusion Strategy for Improving Medical Image Segmentation
8
作者 Fahad Alraddady E.A.Zanaty +1 位作者 Aida HAbu bakr Walaa M.Abd-Elhafiez 《Computers, Materials & Continua》 SCIE EI 2023年第2期3627-3646,共20页
In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic al... In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic algorithm)in order to improve the image segmentation.The proposed technique based on fusing the data from Particle Swarm Optimization(PSO),Cuckoo search,modification of Cuckoo Search(CS McCulloch)and Genetic algorithms are obtained for improving magnetic resonance images(MRIs)segmentation.Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods.In order to obtain parts of the points that determine similar membership values,we apply the different rules of incorporation for these groups.The proposed approach is applied to challenging applications:MRI images,gray matter/white matter of brain segmentations and original black/white images Behavior of the proposed algorithm is provided by applying to different medical images.It is shown that the proposed method gives accurate results;due to the decision fusion produces the greatest improvement in classification accuracy. 展开更多
关键词 Decision fusion particle swarmoptimization(PSO) cuckoo search algorithm CS McCulloch algorithm genetic algorithm CT and MRI
在线阅读 下载PDF
New Time-varying Fuzzy Sets Based on a PSO Midpoint of the Universe of Discourse
9
作者 Salim Ziani 《International Journal of Automation and computing》 EI CSCD 2016年第4期392-400,共9页
The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based... The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based on a new type of time-varying fuzzy sets (TVFS). These fuzzy sets are characterized by displacement of the kernels to the right or left of the universe of discourse, and they are directed by a well-defined criterion. In this work, we only focused on the movement of midpoint of the universe. The movements of this midpoint are optimized by particle swarm optimization (PSO) approach. 展开更多
关键词 Fuzzy sets fuzzy system membership function parallel distributed compensation (PDC) fuzzy controller particle swarmoptimization (PSO) approach linear matrix inequality (LMI).
原文传递
Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model
10
作者 K.Ravishankar C.Jothikumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期613-635,共23页
Since COVID-19 infections are increasing all over the world,there is a need for developing solutions for its early and accurate diagnosis is a must.Detectionmethods for COVID-19 include screeningmethods like Chest X-r... Since COVID-19 infections are increasing all over the world,there is a need for developing solutions for its early and accurate diagnosis is a must.Detectionmethods for COVID-19 include screeningmethods like Chest X-rays and Computed Tomography(CT)scans.More work must be done on preprocessing the datasets,such as eliminating the diaphragm portions,enhancing the image intensity,and minimizing noise.In addition to the detection of COVID-19,the severity of the infection needs to be estimated.The HSDC model is proposed to solve these problems,which will detect and classify the severity of COVID-19 from X-ray and CT-scan images.For CT-scan images,the histogram threshold of the input image is adaptively determined using the ICH Swarm Optimization Segmentation(ICHSeg)algorithm.Based on the Statistical and Shape-based feature vectors(FVs),the extracted regions are classified using a Hybrid model for CT images(HSDCCT)algorithm.When the infections are detected,it’s classified as Normal,Moderate,and Severe.A fused FHI is formed for X-ray images by extracting the features of Histogram-oriented gradient(HOG)and Image profile(IP).The FHI features of X-ray images are classified using Hybrid Support Vector Machine(SVM)and Deep Convolutional Neural Network(DCNN)HSDCX algorithm into COVID-19 or else Pneumonia,or Normal.Experimental results have shown that the accuracy of the HSDC model attains the highest of 94.6 for CT-scan images and 95.6 for X-ray images when compared to SVM and DCNN.This study thus significantly helps medical professionals and doctors diagnose COVID-19 infections quickly,which is the most needed in current years. 展开更多
关键词 CT-SCAN convolution neural network(CNN) deep CNN(HSDC) hybrid support vector machine(SVM) improved chicken swarmoptimization(ICHO) COVID-19 and image profile(IP)
在线阅读 下载PDF
Retrieval of aerosol size distribution using improved quantum-behaved particle swarm optimization on spectral extinction measurements 被引量:4
11
作者 Zhenzong He Hong Qi +1 位作者 Qin Chen Liming Ruan 《Particuology》 SCIE EI CAS CSCD 2016年第5期6-14,共9页
An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and ... An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and Lambert-Beer's Law. Compared with the standard particle swarm optimization algo- rithm, the stochastic particle size optimization algorithm and the original QPSO, our IQPSO has faster convergence speed and higher accuracy within a smaller number of generations. Optimization param- eters for the IQPSO were also evaluated; we recommend using four measurement wavelengths and S0 particles. Size distributions of various aerosol types were estimated using the IQPSO under dependent and independent models. Finally, experimental ASDs at different locations in Harbin were recovered using the IQPSO. All our results confirm that the IQpSO algorithm is an effective and reliable technique for estimatinz ASD. 展开更多
关键词 Quantum-behaved particle swarmoptimization AerosolAerosol size distribution Inverse problem
原文传递
Optimization of Pyrolysis Properties using TGA and Cone Calorimeter Test
12
作者 Won-Hee Park Kyung-Beom Yoon 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期168-173,共6页
The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kin... The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kinetic parameters used for deciding pyrolysis rate. A repulsive particle swarm optimization algorithm is used to obtain the pyrolysis-related properties. In the previous study all properties obtained only using a cone calorimeter but in this paper both the cone calorimeter and thermo gravimetric analysis (TGA) are used for precisely optimizing the pyrolysis properties. In the TGA test a very small mass is heated up and conduction and heat capacity in the specimen is negligible so kinetic parameters can first be optimized. Other pyrolysis-related properties such as virgin/char specific heat and conductivity and char density are also optimized in the cone calorimeter test with the already decided parameters in the TGA test. 展开更多
关键词 Pyrolysis properties Thermogravimetric analysis Cone calorimeter Repulsive particle swarmoptimization
原文传递
A comparative study on using meta-heuristic algorithms for road maintenance planning:Insights from field study in a developing country
13
作者 Ali Gerami Matin Reza Vatani Nezafat Amir Golroo 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第5期477-486,共10页
Optimized road maintenance planning seeks for solutions that can minimize the life-cycle cost of a road network and concurrently maximize pavement condition. Aiming at pro- posing an optimal set of road maintenance so... Optimized road maintenance planning seeks for solutions that can minimize the life-cycle cost of a road network and concurrently maximize pavement condition. Aiming at pro- posing an optimal set of road maintenance solutions, robust meta-heuristic algorithms are used in research. Two main optimization techniques are applied including single-objective and multi-objective optimization. Genetic algorithms (GA), particle swarm optimization (PSO), and combination of genetic algorithm and particle swarm optimization (GAPSO) as single-objective techniques are used, while the non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization (MOPSO) which are sufficient for solving computationally complex large-size optimization problems as multi-objective techniques are applied and compared. A real case study from the rural transportation network of Iran is employed to illustrate the sufficiency of the optimum algorithm. The formulation of the optimization model is carried out in such a way that a cost-effective maintenance strategy is reached by preserving the performance level of the road network at a desirable level. So, the objective functions are pavement performance maximization and maintenance cost minimization. It is concluded that multi-objective algorithms including non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization performed better than the single objective algorithms due to the capability to balance between both objectives. And between multi-objective algorithms the NSGAII provides the optimum solution for the road maintenance planning. 展开更多
关键词 Meta-heuristic algorithms Particle swarm optimization Non-domination sorting geneticalgorithm Multi-objective particle swarmoptimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部