In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa...In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.展开更多
Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in...Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in aeronautic and automotive engines due to its excellent mechanical properties and high strength retention at elevated temperature. The aim of this work is to present a fast and reliable methodology of inverse identification of constitutive model parameters directly from cutting experiments. FE-machining simulations implemented with a modified Johnson-Cook(TANH) constitutive model are performed to establish the robust link between observables and constitutive parameters. A series of orthogonal cutting experiments with varied cutting parameters is carried out to allow an exact comparison to the 2 D FE-simulations. A cooperative particle swarm optimization algorithm is developed and implemented into the Matlab programs to identify the enormous constitutive parameters. Results show that the simulation observables(i.e., cutting forces, chip morphologies, cutting temperature) implemented with the identified optimal material constants have high consistency with those obtained from experiments,which illustrates that the FE-machining models using the identified parameters obtained from the proposed methodology could be predicted in a close agreement to the experiments. Considering the wide range of the applied unknown parameters number, the proposed inverse methodology of identifying constitutive equations shows excellent prospect, and it can be used for other newly developed metal materials.展开更多
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed...In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.展开更多
Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the effi...Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the efficiency of the proposed algorithm,DTO is tested and compared to the algorithms of Particle Swarm Optimization(PSO),Whale Optimization Algorithm(WOA),Grey Wolf Optimizer(GWO),and Genetic Algorithm(GA)based on the seven unimodal benchmark functions.Then,ANOVA and Wilcoxon rank-sum tests are performed to confirm the effectiveness of the DTO compared to other optimization techniques.Additionally,to demonstrate the proposed algorithm’s suitability for solving complex realworld issues,DTO is used to solve the feature selection problem.The strategy of using DTOs as feature selection is evaluated using commonly used data sets from the University of California at Irvine(UCI)repository.The findings indicate that the DTO outperforms all other algorithms in addressing feature selection issues,demonstrating the proposed algorithm’s capabilities to solve complex real-world situations.展开更多
Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted s...Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted simplifications to confine problem scale from being too large at the cost of reducing solution space.This study established an optimization framework for the simultaneous optimization of RS and HEN.Firstly,A more comprehensive and compact model was developed to guarantee a relatively complete solution space while reducing model scale as well as its solving difficulty.In this model,a tandem arrangement of connecting sub-coolers and expansion valves was considered in the superstructure;and the pressure/temperature levels were optimized as continuous variables.On this basis,we proposed a"two-step transformation method"to equivalently transform the cross-level structure into a no n-cross-level structu re,and the de-redundant superstructu re was established with ensuring comprehensiveness and rigor.Furthermore,the MINLP model was developed and solved by Particle Swarm Optimization algorithm.Finally,our methodology was validated to get better optimal results with less CPU time in two case studies,an ethylene RS in an existing plant and a reported propylene RS.展开更多
The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from...The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.展开更多
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ...The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach.展开更多
In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic al...In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic algorithm)in order to improve the image segmentation.The proposed technique based on fusing the data from Particle Swarm Optimization(PSO),Cuckoo search,modification of Cuckoo Search(CS McCulloch)and Genetic algorithms are obtained for improving magnetic resonance images(MRIs)segmentation.Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods.In order to obtain parts of the points that determine similar membership values,we apply the different rules of incorporation for these groups.The proposed approach is applied to challenging applications:MRI images,gray matter/white matter of brain segmentations and original black/white images Behavior of the proposed algorithm is provided by applying to different medical images.It is shown that the proposed method gives accurate results;due to the decision fusion produces the greatest improvement in classification accuracy.展开更多
The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based...The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based on a new type of time-varying fuzzy sets (TVFS). These fuzzy sets are characterized by displacement of the kernels to the right or left of the universe of discourse, and they are directed by a well-defined criterion. In this work, we only focused on the movement of midpoint of the universe. The movements of this midpoint are optimized by particle swarm optimization (PSO) approach.展开更多
Since COVID-19 infections are increasing all over the world,there is a need for developing solutions for its early and accurate diagnosis is a must.Detectionmethods for COVID-19 include screeningmethods like Chest X-r...Since COVID-19 infections are increasing all over the world,there is a need for developing solutions for its early and accurate diagnosis is a must.Detectionmethods for COVID-19 include screeningmethods like Chest X-rays and Computed Tomography(CT)scans.More work must be done on preprocessing the datasets,such as eliminating the diaphragm portions,enhancing the image intensity,and minimizing noise.In addition to the detection of COVID-19,the severity of the infection needs to be estimated.The HSDC model is proposed to solve these problems,which will detect and classify the severity of COVID-19 from X-ray and CT-scan images.For CT-scan images,the histogram threshold of the input image is adaptively determined using the ICH Swarm Optimization Segmentation(ICHSeg)algorithm.Based on the Statistical and Shape-based feature vectors(FVs),the extracted regions are classified using a Hybrid model for CT images(HSDCCT)algorithm.When the infections are detected,it’s classified as Normal,Moderate,and Severe.A fused FHI is formed for X-ray images by extracting the features of Histogram-oriented gradient(HOG)and Image profile(IP).The FHI features of X-ray images are classified using Hybrid Support Vector Machine(SVM)and Deep Convolutional Neural Network(DCNN)HSDCX algorithm into COVID-19 or else Pneumonia,or Normal.Experimental results have shown that the accuracy of the HSDC model attains the highest of 94.6 for CT-scan images and 95.6 for X-ray images when compared to SVM and DCNN.This study thus significantly helps medical professionals and doctors diagnose COVID-19 infections quickly,which is the most needed in current years.展开更多
An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and ...An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and Lambert-Beer's Law. Compared with the standard particle swarm optimization algo- rithm, the stochastic particle size optimization algorithm and the original QPSO, our IQPSO has faster convergence speed and higher accuracy within a smaller number of generations. Optimization param- eters for the IQPSO were also evaluated; we recommend using four measurement wavelengths and S0 particles. Size distributions of various aerosol types were estimated using the IQPSO under dependent and independent models. Finally, experimental ASDs at different locations in Harbin were recovered using the IQPSO. All our results confirm that the IQpSO algorithm is an effective and reliable technique for estimatinz ASD.展开更多
The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kin...The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kinetic parameters used for deciding pyrolysis rate. A repulsive particle swarm optimization algorithm is used to obtain the pyrolysis-related properties. In the previous study all properties obtained only using a cone calorimeter but in this paper both the cone calorimeter and thermo gravimetric analysis (TGA) are used for precisely optimizing the pyrolysis properties. In the TGA test a very small mass is heated up and conduction and heat capacity in the specimen is negligible so kinetic parameters can first be optimized. Other pyrolysis-related properties such as virgin/char specific heat and conductivity and char density are also optimized in the cone calorimeter test with the already decided parameters in the TGA test.展开更多
Optimized road maintenance planning seeks for solutions that can minimize the life-cycle cost of a road network and concurrently maximize pavement condition. Aiming at pro- posing an optimal set of road maintenance so...Optimized road maintenance planning seeks for solutions that can minimize the life-cycle cost of a road network and concurrently maximize pavement condition. Aiming at pro- posing an optimal set of road maintenance solutions, robust meta-heuristic algorithms are used in research. Two main optimization techniques are applied including single-objective and multi-objective optimization. Genetic algorithms (GA), particle swarm optimization (PSO), and combination of genetic algorithm and particle swarm optimization (GAPSO) as single-objective techniques are used, while the non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization (MOPSO) which are sufficient for solving computationally complex large-size optimization problems as multi-objective techniques are applied and compared. A real case study from the rural transportation network of Iran is employed to illustrate the sufficiency of the optimum algorithm. The formulation of the optimization model is carried out in such a way that a cost-effective maintenance strategy is reached by preserving the performance level of the road network at a desirable level. So, the objective functions are pavement performance maximization and maintenance cost minimization. It is concluded that multi-objective algorithms including non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization performed better than the single objective algorithms due to the capability to balance between both objectives. And between multi-objective algorithms the NSGAII provides the optimum solution for the road maintenance planning.展开更多
文摘In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.
基金financial support of the National Natural Science Foundation of China (No. 51475233)
文摘Ti_2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in aeronautic and automotive engines due to its excellent mechanical properties and high strength retention at elevated temperature. The aim of this work is to present a fast and reliable methodology of inverse identification of constitutive model parameters directly from cutting experiments. FE-machining simulations implemented with a modified Johnson-Cook(TANH) constitutive model are performed to establish the robust link between observables and constitutive parameters. A series of orthogonal cutting experiments with varied cutting parameters is carried out to allow an exact comparison to the 2 D FE-simulations. A cooperative particle swarm optimization algorithm is developed and implemented into the Matlab programs to identify the enormous constitutive parameters. Results show that the simulation observables(i.e., cutting forces, chip morphologies, cutting temperature) implemented with the identified optimal material constants have high consistency with those obtained from experiments,which illustrates that the FE-machining models using the identified parameters obtained from the proposed methodology could be predicted in a close agreement to the experiments. Considering the wide range of the applied unknown parameters number, the proposed inverse methodology of identifying constitutive equations shows excellent prospect, and it can be used for other newly developed metal materials.
基金Foundation item: Projects(61102106, 61102105) supported by the National Natural Science Foundation of China Project(2013M530148) supported by China Postdoctoral Science Foundation Project(HEUCF120806) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
文摘Dipper throated optimization(DTO)algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the efficiency of the proposed algorithm,DTO is tested and compared to the algorithms of Particle Swarm Optimization(PSO),Whale Optimization Algorithm(WOA),Grey Wolf Optimizer(GWO),and Genetic Algorithm(GA)based on the seven unimodal benchmark functions.Then,ANOVA and Wilcoxon rank-sum tests are performed to confirm the effectiveness of the DTO compared to other optimization techniques.Additionally,to demonstrate the proposed algorithm’s suitability for solving complex realworld issues,DTO is used to solve the feature selection problem.The strategy of using DTOs as feature selection is evaluated using commonly used data sets from the University of California at Irvine(UCI)repository.The findings indicate that the DTO outperforms all other algorithms in addressing feature selection issues,demonstrating the proposed algorithm’s capabilities to solve complex real-world situations.
基金supported by the National Natural Science Foundation of China(21978203)the Natural Science Foundation of Tianjin(19JCYBJC20300)。
文摘Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted simplifications to confine problem scale from being too large at the cost of reducing solution space.This study established an optimization framework for the simultaneous optimization of RS and HEN.Firstly,A more comprehensive and compact model was developed to guarantee a relatively complete solution space while reducing model scale as well as its solving difficulty.In this model,a tandem arrangement of connecting sub-coolers and expansion valves was considered in the superstructure;and the pressure/temperature levels were optimized as continuous variables.On this basis,we proposed a"two-step transformation method"to equivalently transform the cross-level structure into a no n-cross-level structu re,and the de-redundant superstructu re was established with ensuring comprehensiveness and rigor.Furthermore,the MINLP model was developed and solved by Particle Swarm Optimization algorithm.Finally,our methodology was validated to get better optimal results with less CPU time in two case studies,an ethylene RS in an existing plant and a reported propylene RS.
基金the National Natural Science Foundation of China under Grant No.61261016,Wuhan Science and technology project for the Solar energy intelligent management system development and application demonstration
文摘The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.
基金Project(ZR2011FM005)supported by the Natural Science Foundation of Shandong Province,China
文摘The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach.
基金Taif University Researchers for Supporting Project number(TURSP-2020/214),Taif University,Taif Saudi Arabia.
文摘In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic algorithm)in order to improve the image segmentation.The proposed technique based on fusing the data from Particle Swarm Optimization(PSO),Cuckoo search,modification of Cuckoo Search(CS McCulloch)and Genetic algorithms are obtained for improving magnetic resonance images(MRIs)segmentation.Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods.In order to obtain parts of the points that determine similar membership values,we apply the different rules of incorporation for these groups.The proposed approach is applied to challenging applications:MRI images,gray matter/white matter of brain segmentations and original black/white images Behavior of the proposed algorithm is provided by applying to different medical images.It is shown that the proposed method gives accurate results;due to the decision fusion produces the greatest improvement in classification accuracy.
文摘The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Tal^gi-Sugeno (T-S) fuzzy model. This controller is based on a new type of time-varying fuzzy sets (TVFS). These fuzzy sets are characterized by displacement of the kernels to the right or left of the universe of discourse, and they are directed by a well-defined criterion. In this work, we only focused on the movement of midpoint of the universe. The movements of this midpoint are optimized by particle swarm optimization (PSO) approach.
文摘Since COVID-19 infections are increasing all over the world,there is a need for developing solutions for its early and accurate diagnosis is a must.Detectionmethods for COVID-19 include screeningmethods like Chest X-rays and Computed Tomography(CT)scans.More work must be done on preprocessing the datasets,such as eliminating the diaphragm portions,enhancing the image intensity,and minimizing noise.In addition to the detection of COVID-19,the severity of the infection needs to be estimated.The HSDC model is proposed to solve these problems,which will detect and classify the severity of COVID-19 from X-ray and CT-scan images.For CT-scan images,the histogram threshold of the input image is adaptively determined using the ICH Swarm Optimization Segmentation(ICHSeg)algorithm.Based on the Statistical and Shape-based feature vectors(FVs),the extracted regions are classified using a Hybrid model for CT images(HSDCCT)algorithm.When the infections are detected,it’s classified as Normal,Moderate,and Severe.A fused FHI is formed for X-ray images by extracting the features of Histogram-oriented gradient(HOG)and Image profile(IP).The FHI features of X-ray images are classified using Hybrid Support Vector Machine(SVM)and Deep Convolutional Neural Network(DCNN)HSDCX algorithm into COVID-19 or else Pneumonia,or Normal.Experimental results have shown that the accuracy of the HSDC model attains the highest of 94.6 for CT-scan images and 95.6 for X-ray images when compared to SVM and DCNN.This study thus significantly helps medical professionals and doctors diagnose COVID-19 infections quickly,which is the most needed in current years.
基金Support from the National Natural Science Foundation of China (No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (No. 51327803) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51421063) is gratefully acknowledged.
文摘An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and Lambert-Beer's Law. Compared with the standard particle swarm optimization algo- rithm, the stochastic particle size optimization algorithm and the original QPSO, our IQPSO has faster convergence speed and higher accuracy within a smaller number of generations. Optimization param- eters for the IQPSO were also evaluated; we recommend using four measurement wavelengths and S0 particles. Size distributions of various aerosol types were estimated using the IQPSO under dependent and independent models. Finally, experimental ASDs at different locations in Harbin were recovered using the IQPSO. All our results confirm that the IQpSO algorithm is an effective and reliable technique for estimatinz ASD.
文摘The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kinetic parameters used for deciding pyrolysis rate. A repulsive particle swarm optimization algorithm is used to obtain the pyrolysis-related properties. In the previous study all properties obtained only using a cone calorimeter but in this paper both the cone calorimeter and thermo gravimetric analysis (TGA) are used for precisely optimizing the pyrolysis properties. In the TGA test a very small mass is heated up and conduction and heat capacity in the specimen is negligible so kinetic parameters can first be optimized. Other pyrolysis-related properties such as virgin/char specific heat and conductivity and char density are also optimized in the cone calorimeter test with the already decided parameters in the TGA test.
文摘Optimized road maintenance planning seeks for solutions that can minimize the life-cycle cost of a road network and concurrently maximize pavement condition. Aiming at pro- posing an optimal set of road maintenance solutions, robust meta-heuristic algorithms are used in research. Two main optimization techniques are applied including single-objective and multi-objective optimization. Genetic algorithms (GA), particle swarm optimization (PSO), and combination of genetic algorithm and particle swarm optimization (GAPSO) as single-objective techniques are used, while the non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization (MOPSO) which are sufficient for solving computationally complex large-size optimization problems as multi-objective techniques are applied and compared. A real case study from the rural transportation network of Iran is employed to illustrate the sufficiency of the optimum algorithm. The formulation of the optimization model is carried out in such a way that a cost-effective maintenance strategy is reached by preserving the performance level of the road network at a desirable level. So, the objective functions are pavement performance maximization and maintenance cost minimization. It is concluded that multi-objective algorithms including non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization performed better than the single objective algorithms due to the capability to balance between both objectives. And between multi-objective algorithms the NSGAII provides the optimum solution for the road maintenance planning.