SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a diff...SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.展开更多
目前基于攻击图的网络安全主动防御技术在计算最优防护策略时,很少考虑网络攻击中存在的不确定性因素。为此,提出一种基于贝叶斯攻击图的最优防护策略选择(Optimal Hardening Measures Selection based on Bayesian Attack Graphs,HMSB...目前基于攻击图的网络安全主动防御技术在计算最优防护策略时,很少考虑网络攻击中存在的不确定性因素。为此,提出一种基于贝叶斯攻击图的最优防护策略选择(Optimal Hardening Measures Selection based on Bayesian Attack Graphs,HMSBAG)模型。该模型通过漏洞利用成功概率和攻击成功概率描述攻击行为的不确定性;结合贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,进而评估当前网络风险;构建防护成本和攻击收益的经济学指标及指标量化方法,运用成本-收益分析方法,提出了基于粒子群的最优安全防护策略选择算法。实验验证了该模型在防护策略决策方面的可行性和有效性,有效降低网络安全风险。展开更多
随着深度学习在计算机视觉领域的广泛应用,人脸认证、车牌识别、路牌识别等也随之呈现商业化应用趋势.因此,针对深度学习模型的安全性研究至关重要.已有的研究发现:深度学习模型易受精心制作的包含微小扰动的对抗样本攻击,输出完全错误...随着深度学习在计算机视觉领域的广泛应用,人脸认证、车牌识别、路牌识别等也随之呈现商业化应用趋势.因此,针对深度学习模型的安全性研究至关重要.已有的研究发现:深度学习模型易受精心制作的包含微小扰动的对抗样本攻击,输出完全错误的识别结果.针对深度模型的对抗攻击是致命的,但同时也能帮助研究人员发现模型漏洞,并采取进一步改进措施.基于该思想,针对自动驾驶场景中的基于深度学习的路牌识别模型,提出一种基于粒子群优化的黑盒物理攻击方法(black-box physical attack via PSO,简称BPA-PSO).BPA-PSO在未知模型结构的前提下,不仅可以实现对深度模型的黑盒攻击,还能使得实际物理场景中的路牌识别模型失效.通过在电子空间的数字图像场景、物理空间的实验室及户外路况等场景下的大量实验,验证了所提出的BPA-PSO算法的攻击有效性,可发现模型漏洞,进一步提高深度学习的应用安全性.最后,对BPA-PSO算法存在的问题进行分析,对未来的研究可能面临的挑战进行了展望.展开更多
为了有效判断网络数据包是否存在被攻击的可能性,在以往的研究基础上提出了一种新的检测算法DMPS(Detection method based of particle susarm)。首先该算法根据数据包属性的离散度定义了状态检测指标,并利用粒子群优化方法给出了标准...为了有效判断网络数据包是否存在被攻击的可能性,在以往的研究基础上提出了一种新的检测算法DMPS(Detection method based of particle susarm)。首先该算法根据数据包属性的离散度定义了状态检测指标,并利用粒子群优化方法给出了标准差分布的计算流程,以此判断数据包的异常状况。最后,通过OPNET和Matlab进行仿真实验,深入研究了影响该算法的关键因素,同时对比了与其他算法之间的性能状况,结果表明DMPS具有较好的适应性。展开更多
基金supported by the Hebei Province Innovation Capacity Improvement Program of China under Grant No.179676278Dthe Ministry of Education Fund Project of China under Grant No.2017A20004
文摘SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.
文摘目前基于攻击图的网络安全主动防御技术在计算最优防护策略时,很少考虑网络攻击中存在的不确定性因素。为此,提出一种基于贝叶斯攻击图的最优防护策略选择(Optimal Hardening Measures Selection based on Bayesian Attack Graphs,HMSBAG)模型。该模型通过漏洞利用成功概率和攻击成功概率描述攻击行为的不确定性;结合贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,进而评估当前网络风险;构建防护成本和攻击收益的经济学指标及指标量化方法,运用成本-收益分析方法,提出了基于粒子群的最优安全防护策略选择算法。实验验证了该模型在防护策略决策方面的可行性和有效性,有效降低网络安全风险。
文摘随着深度学习在计算机视觉领域的广泛应用,人脸认证、车牌识别、路牌识别等也随之呈现商业化应用趋势.因此,针对深度学习模型的安全性研究至关重要.已有的研究发现:深度学习模型易受精心制作的包含微小扰动的对抗样本攻击,输出完全错误的识别结果.针对深度模型的对抗攻击是致命的,但同时也能帮助研究人员发现模型漏洞,并采取进一步改进措施.基于该思想,针对自动驾驶场景中的基于深度学习的路牌识别模型,提出一种基于粒子群优化的黑盒物理攻击方法(black-box physical attack via PSO,简称BPA-PSO).BPA-PSO在未知模型结构的前提下,不仅可以实现对深度模型的黑盒攻击,还能使得实际物理场景中的路牌识别模型失效.通过在电子空间的数字图像场景、物理空间的实验室及户外路况等场景下的大量实验,验证了所提出的BPA-PSO算法的攻击有效性,可发现模型漏洞,进一步提高深度学习的应用安全性.最后,对BPA-PSO算法存在的问题进行分析,对未来的研究可能面临的挑战进行了展望.
文摘为了有效判断网络数据包是否存在被攻击的可能性,在以往的研究基础上提出了一种新的检测算法DMPS(Detection method based of particle susarm)。首先该算法根据数据包属性的离散度定义了状态检测指标,并利用粒子群优化方法给出了标准差分布的计算流程,以此判断数据包的异常状况。最后,通过OPNET和Matlab进行仿真实验,深入研究了影响该算法的关键因素,同时对比了与其他算法之间的性能状况,结果表明DMPS具有较好的适应性。