The effect of hazard was determined by the dangerous degree of hazard factor—environment and the vulnerable degree of sustaining body. The research into the latter is of importance for the hazard theory and the forma...The effect of hazard was determined by the dangerous degree of hazard factor—environment and the vulnerable degree of sustaining body. The research into the latter is of importance for the hazard theory and the formation of laws on the mitigation of natural hazards. The way to evaluate the vulnerable degree is the foundation of and the key to the research. In this paper, the extenics model is established to do this job.展开更多
Seven reinforced concrete ( RC ) beams strengthened in flexure using carbon fiber reinforced polymer (CFRP) sheets subjected to different sustaining loads were tested. The effects of initial load and load history ...Seven reinforced concrete ( RC ) beams strengthened in flexure using carbon fiber reinforced polymer (CFRP) sheets subjected to different sustaining loads were tested. The effects of initial load and load history on the ultimate strength of strengthened RC beams were examined by externally bonded CFRP sheets. The main experimental parameters included different levels of sustaining load at the time of strengthening, and load history. Experimental results show that sustaining load levels at the time of strengthening have important influences on the ultimate strength of strengthened RC beams. If the initial load is the same, the ultimate strength of RC beams strengthened with CFRP sheets is almost the same regardless of load history at the time of strengthening.展开更多
With the aim of drawing valuable lessons for the management and planning of similar business transformation initiatives, this paper critically evaluates a change project at an organization in South Africa, from three ...With the aim of drawing valuable lessons for the management and planning of similar business transformation initiatives, this paper critically evaluates a change project at an organization in South Africa, from three inter-woven dimensions: creating the climate for change, engaging and enabling the organization, and sustaining change. Firstly, a key achievement demonstrates that attempts to create a conducive climate for change should recognize that the unit of change in any organization is, ultimately, the individual. Levers for such initiatives should navigate the macro-organizational change narrative and translate change generalities into specific individual actions and behaviors. Secondly, learning from an implementation gap, similar efforts would gain better traction in engagement and empowerment by leveraging on an influential cross-functional team made up of enthusiastic supporters of the required change, to foster ownership and to embrace change across the organization. Key characteristics that should be represented on the team include leadership skills, expertise, credibility, effective communication, and a sense of urgency. Thirdly, in terms of sustaining change, twin lessons surge to the fore. On a positive note, by progressing its values-set into an annual staff award, there is a pointer to the potential of innovatively encouraging and rewarding employees to live the value qualities. And, on the flip side, a need is underscore of the critical role of seamless executive leadership, providing ongoing co-creating windows for instilling positive attitudes and creating synergies among related strategic initiatives.展开更多
In the current scenario of rapid expansion of higher education, it becomesimperative to study the dynamic factors underlying quality education,student motivation and learning outcomes. Most of the literature available...In the current scenario of rapid expansion of higher education, it becomesimperative to study the dynamic factors underlying quality education,student motivation and learning outcomes. Most of the literature availableas on date are predominantly based on western studies, where theindividual’s personal achievement, autonomy, control, power are consideredto be most important. But these western models often influenced by theirindividualistic philosophy and cultural values are quite inapplicable forpluralistic Indian society, where we believe in collaboration and teamwork.Rare attempts have been made to develop an indigenous model to measurethese attributes in our society. The present study is first of its kind to assessthe salient and non-salient needs of technical students pursuing their studiesin India. Authors have identified measures of the students’ engagement invarious academic, co-curricular activities and their performance outcomes.A sample of Four-hundred and Sixty-five (N=465) engineering/sciencestudents were collected through purposive sampling exclusively from IITKharagpur , a premier technical institute in eastern India where studentsacross the country got selected and joined on merit basis, through thenational level joint entrance examination for Engineering and Science, thetoughest examination in the country, known as IIT-JEE. Career implicationsare discussed in light of the major findings.展开更多
There are rich natural resources of natural mineral drugs in eastern Jilin Province. Systematic resource investigation can elevate fractional conversion of this area' s mineral drugs resources superiority. Researc...There are rich natural resources of natural mineral drugs in eastern Jilin Province. Systematic resource investigation can elevate fractional conversion of this area' s mineral drugs resources superiority. Research on natural mineral drugs of this area can upgrade the translation rate of resource superiority and accelerate the development of local medical industry, especially, it can provide scientific data for founding the strategic design of Chinese traditional medicine's trademark of Jilin Changbai Mountain. Since the resource of mineral drugs can not be regenerated, it must be exploited scientifically, utilized reasonably and protected effectively its sustaining application.展开更多
When Li Weiping boarded the flight from New York to Beijing in April, it heralded her independence. The 75 year-old Chinese had stayed in the United States for two years after her husband died.
Growth of older population in United States requires multi-generational evaluation to characterize health measures for sustaining workability. Investigation of measures that working population would need and use with ...Growth of older population in United States requires multi-generational evaluation to characterize health measures for sustaining workability. Investigation of measures that working population would need and use with their work-life in an attempt to stay healthy and fit, could potentially reveal significant association that could extend workability and enhance work productivity such as performance, presenteeism, job satisfaction. Evaluation with selective longitudinal health profiling;employment prerequisites;socio-economic and psychological scales could characterize health measures significantly associated with work sustainability. Such health measures could potentially be employed by US working population early in their life and occupation to sustain and improve workability in their later epoch.展开更多
The research aims to propose a proper model for organizing a creative wedding event to boost Community-Based Eco-Tourism(CBET)in rural areas.It is participatory research.Site observation and in-depth interviews are 10...The research aims to propose a proper model for organizing a creative wedding event to boost Community-Based Eco-Tourism(CBET)in rural areas.It is participatory research.Site observation and in-depth interviews are 10 stakeholders from various organization;local people,the district sheriff,the provincial culture,the national park,the district municipality,the community-based tourism group,the wedding organizers and the educators from a wedding event in themed“Carry Love Covering the Forest”organized in Wiang Sa,Suratthani,the southern part of Thailand were applied.Thematic analysis was applied to analyze the data.The results found that the managing model for organizing an event tourism in Community-Based Eco-Tourism composes of three stages being pre-event,during-event,and after-event.The research provides a comprehensive understanding management model of CBET.The research makes contribution to develop and manage a new creative event to enhance positive impacts of community-based tourism to sustain,especially in eco-tourism destination.展开更多
CLIL,which stands for Content and Language Integrated Learning,is an instructional approach that gives ample curricular and pedagogical attention to content and language outcomes in multilingual educational settings.I...CLIL,which stands for Content and Language Integrated Learning,is an instructional approach that gives ample curricular and pedagogical attention to content and language outcomes in multilingual educational settings.Increasingly,it is heralded as a way to responsibly enact top-down English-Medium-of-Instruction(EMI)policies at the university level,where teachers and students are tasked with developing their English proficiency while remaining competitive in the international job market.However,teachers and teacher educators hoping to implement this approach in their science,technology,engineering and mathematics(STEM)content courses face significant challenges.This article serves as an introduction to a vip-edited special issue that reports on several aspects related to a project of international collaboration called Project SCILLA,an acronym for“STEM Content Integrated with Language-Learning Activities”.We first provide a brief overview of the project,which was developed and carried out in collaboration between Michigan State University and a consortium of 10 rural universities in Kazakhstan as a way to support STEM educators who wish to adapt their teaching practices to Kazakhstan’s Ministry of Education.We then offer an overview of the six articles that comprise the special issue,and call for deliberate and dialogic international collaboration as a way to support teachers responding to language policy demands.展开更多
Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing...Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.展开更多
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med...The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.展开更多
Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In th...Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.展开更多
Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan...Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.展开更多
Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this...Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this paper is to explore the potential applications of blockchain in supporting the achievement of these sustainability goals.Starting from a review of the relevant literature on this topic,the main fields in which blockchain can contribute to sustainable development will be identified.The main blockchain applications will then be analyzed and categorized according to these SDGs.This research will then critically present the main blockchain-based projects that emerged in the first stage of the study and were implemented by the United Nations.The main objectives and benefits of each project will be analyzed.This is where the originality of this paper lies.To the best of the author’s knowledge,this is one of the first attempts to present a comprehensive overview of the United Nations’projects related to SDGs 1,2,5,7,9,13,and 16.This paper,which bridges the gap between innovation management and the sustainability field,will contribute to the increasingly current debate on sustainability issues and be beneficial to scholars,practitioners,and policymakers alike.展开更多
Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of ...Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.展开更多
The rapid urbanization and increasing challenges are faced by cities globally,including climate change,population growth,and resource constraints.Sustainable smart city(also referred to as“smart sustainable city”)ca...The rapid urbanization and increasing challenges are faced by cities globally,including climate change,population growth,and resource constraints.Sustainable smart city(also referred to as“smart sustainable city”)can offer innovative solutions by integrating advanced technologies to build smarter,greener,and more livable urban environments with significant benefits.Using the Web of Science(WoS)database,this study examined:(i)the mainstream approaches and current research trends in the literature of sustainable smart city;(ii)the extent to which the research of sustainable smart city aligns with Sustainable Development Goals(SDGs);(iii)the current topics and collaboration patterns in sustainable smart city research;and(iv)the potential opportunities for future research on the sustainable smart city field.The findings indicated that research on sustainable smart city began in 2010 and gained significant momentum in 2013,with China leading,followed by Italy and Spain.Moreover,59.00%of the selected publications on the research of sustainable smart city focus on SDG 11(Sustainable Cities and Communities).Bibliometric analysis outcome revealed that artificial intelligence(AI),big data,machine learning,and deep learning are emerging research fields.The terms smart city,smart cities,and sustainability emerged as the top three co-occurring keywords with the highest link strength,followed by frequently co-occurring keywords such as AI,innovation,big data,urban governance,resilience,machine learning,and Internet of Things(IoT).The clustering results indicated that current studies explored the theoretical foundation,challenges,and future prospects of sustainable smart city,with an emphasis on sustainability.To further support urban sustainability and the attainment of SDGs,the future research of sustainable smart city should explore the application and implications of AI and big data on urban development including cybersecurity and governance challenges.展开更多
Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and...Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and leading catalytic materials in both electro and photocatalytic water splitting(WSR);two sustainable methods of green hydrogen production.WBGs guarantee long life time of photo charge carriers and thereby surface availability of electrons and holes.Therefore,WBG(with appropriate VB-CB potential)along with small band gap materials or sensitizers can yield extraordinary photocatalytic system for hydrogen production under solar light.The factors such as,free energy of hydrogen adsorption(ΔGH^(*))close to zero,high electron mobility,great thermal as well as electro chemical stability and high tunability make WBG an interesting and excellent catalyst in electrolysis too.Taking into account the current relevance and future scope,the present review article comprehends different dimensions of WBG materials as an electro/photo catalyst for hydrogen evolution reaction.Herein WBG semiconductors are presented under various classes;viz.II-VI,III-V,III-VI,lanthanide oxides,transition metal based systems,carbonaceous materials and other systems such as SiC and MXenes.Catalytic properties of WBGs favorable for hydrogen production are then reviewed.A detailed analysis on relationship between band structure and activity(electro,photo and photo-electrochemical WSR)is performed.The challenges involved in these reactions as well as the direction of advancement in WBG based catalysis are also debated.By virtue of this article authors aims to guideline and promote the development of new WBG based electro/photocatalyst for HER and other applications.展开更多
Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as...Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.展开更多
Acute pancreatitis(AP) is not a disorder limited to a single organ,the pancreas,but often results in transient or sustained dysfunction,and even failure,of multiple organs,particularly as the disease progresses.^([1])...Acute pancreatitis(AP) is not a disorder limited to a single organ,the pancreas,but often results in transient or sustained dysfunction,and even failure,of multiple organs,particularly as the disease progresses.^([1]) Therefore,although AP is primarily a localized disease with systemic consequences in a subset of patients,its clinical manifestations extend beyond digestive system symptoms to encompass a variety of additional symptoms,particularly during disease progression from mild AP(MAP) to severe AP(SAP).展开更多
文摘The effect of hazard was determined by the dangerous degree of hazard factor—environment and the vulnerable degree of sustaining body. The research into the latter is of importance for the hazard theory and the formation of laws on the mitigation of natural hazards. The way to evaluate the vulnerable degree is the foundation of and the key to the research. In this paper, the extenics model is established to do this job.
文摘Seven reinforced concrete ( RC ) beams strengthened in flexure using carbon fiber reinforced polymer (CFRP) sheets subjected to different sustaining loads were tested. The effects of initial load and load history on the ultimate strength of strengthened RC beams were examined by externally bonded CFRP sheets. The main experimental parameters included different levels of sustaining load at the time of strengthening, and load history. Experimental results show that sustaining load levels at the time of strengthening have important influences on the ultimate strength of strengthened RC beams. If the initial load is the same, the ultimate strength of RC beams strengthened with CFRP sheets is almost the same regardless of load history at the time of strengthening.
文摘With the aim of drawing valuable lessons for the management and planning of similar business transformation initiatives, this paper critically evaluates a change project at an organization in South Africa, from three inter-woven dimensions: creating the climate for change, engaging and enabling the organization, and sustaining change. Firstly, a key achievement demonstrates that attempts to create a conducive climate for change should recognize that the unit of change in any organization is, ultimately, the individual. Levers for such initiatives should navigate the macro-organizational change narrative and translate change generalities into specific individual actions and behaviors. Secondly, learning from an implementation gap, similar efforts would gain better traction in engagement and empowerment by leveraging on an influential cross-functional team made up of enthusiastic supporters of the required change, to foster ownership and to embrace change across the organization. Key characteristics that should be represented on the team include leadership skills, expertise, credibility, effective communication, and a sense of urgency. Thirdly, in terms of sustaining change, twin lessons surge to the fore. On a positive note, by progressing its values-set into an annual staff award, there is a pointer to the potential of innovatively encouraging and rewarding employees to live the value qualities. And, on the flip side, a need is underscore of the critical role of seamless executive leadership, providing ongoing co-creating windows for instilling positive attitudes and creating synergies among related strategic initiatives.
文摘In the current scenario of rapid expansion of higher education, it becomesimperative to study the dynamic factors underlying quality education,student motivation and learning outcomes. Most of the literature availableas on date are predominantly based on western studies, where theindividual’s personal achievement, autonomy, control, power are consideredto be most important. But these western models often influenced by theirindividualistic philosophy and cultural values are quite inapplicable forpluralistic Indian society, where we believe in collaboration and teamwork.Rare attempts have been made to develop an indigenous model to measurethese attributes in our society. The present study is first of its kind to assessthe salient and non-salient needs of technical students pursuing their studiesin India. Authors have identified measures of the students’ engagement invarious academic, co-curricular activities and their performance outcomes.A sample of Four-hundred and Sixty-five (N=465) engineering/sciencestudents were collected through purposive sampling exclusively from IITKharagpur , a premier technical institute in eastern India where studentsacross the country got selected and joined on merit basis, through thenational level joint entrance examination for Engineering and Science, thetoughest examination in the country, known as IIT-JEE. Career implicationsare discussed in light of the major findings.
文摘There are rich natural resources of natural mineral drugs in eastern Jilin Province. Systematic resource investigation can elevate fractional conversion of this area' s mineral drugs resources superiority. Research on natural mineral drugs of this area can upgrade the translation rate of resource superiority and accelerate the development of local medical industry, especially, it can provide scientific data for founding the strategic design of Chinese traditional medicine's trademark of Jilin Changbai Mountain. Since the resource of mineral drugs can not be regenerated, it must be exploited scientifically, utilized reasonably and protected effectively its sustaining application.
文摘When Li Weiping boarded the flight from New York to Beijing in April, it heralded her independence. The 75 year-old Chinese had stayed in the United States for two years after her husband died.
文摘Growth of older population in United States requires multi-generational evaluation to characterize health measures for sustaining workability. Investigation of measures that working population would need and use with their work-life in an attempt to stay healthy and fit, could potentially reveal significant association that could extend workability and enhance work productivity such as performance, presenteeism, job satisfaction. Evaluation with selective longitudinal health profiling;employment prerequisites;socio-economic and psychological scales could characterize health measures significantly associated with work sustainability. Such health measures could potentially be employed by US working population early in their life and occupation to sustain and improve workability in their later epoch.
文摘The research aims to propose a proper model for organizing a creative wedding event to boost Community-Based Eco-Tourism(CBET)in rural areas.It is participatory research.Site observation and in-depth interviews are 10 stakeholders from various organization;local people,the district sheriff,the provincial culture,the national park,the district municipality,the community-based tourism group,the wedding organizers and the educators from a wedding event in themed“Carry Love Covering the Forest”organized in Wiang Sa,Suratthani,the southern part of Thailand were applied.Thematic analysis was applied to analyze the data.The results found that the managing model for organizing an event tourism in Community-Based Eco-Tourism composes of three stages being pre-event,during-event,and after-event.The research provides a comprehensive understanding management model of CBET.The research makes contribution to develop and manage a new creative event to enhance positive impacts of community-based tourism to sustain,especially in eco-tourism destination.
基金funding from the U.S.-Kazakhstan University Partnerships program funded by the U.S.Mission to Kazakhstan and administered by American Councils[Award number SKZ100-19-CA-0149].
文摘CLIL,which stands for Content and Language Integrated Learning,is an instructional approach that gives ample curricular and pedagogical attention to content and language outcomes in multilingual educational settings.Increasingly,it is heralded as a way to responsibly enact top-down English-Medium-of-Instruction(EMI)policies at the university level,where teachers and students are tasked with developing their English proficiency while remaining competitive in the international job market.However,teachers and teacher educators hoping to implement this approach in their science,technology,engineering and mathematics(STEM)content courses face significant challenges.This article serves as an introduction to a vip-edited special issue that reports on several aspects related to a project of international collaboration called Project SCILLA,an acronym for“STEM Content Integrated with Language-Learning Activities”.We first provide a brief overview of the project,which was developed and carried out in collaboration between Michigan State University and a consortium of 10 rural universities in Kazakhstan as a way to support STEM educators who wish to adapt their teaching practices to Kazakhstan’s Ministry of Education.We then offer an overview of the six articles that comprise the special issue,and call for deliberate and dialogic international collaboration as a way to support teachers responding to language policy demands.
基金funded by the Science and Technology Plan for the Belt and Road Innovation Cooperation Project of Jiangsu Province,China(No.BZ2023003)the National Key Research and Development Program of China(No.2021YFD1500202)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA28010100)the“14th Five-Year Plan”Self-Deployment Project of the Institute of Soil Science,Chinese Academy of Sciences(No.ISSAS2418)the National Natural Science Foundation of China(No.42107334)。
文摘Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2023-B-IV-003-001)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Huaqiao University Engineering Research Center of Brittle Materials Machining(MOE,2023IME-001)。
文摘The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.
基金supported by the Lebanese International University(LIU)with a funding amount of$500.
文摘Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415,and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-IV-002-001 and P2023-B-IV-003-001)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the National Key Laboratory of Science and Technology on Helicopter Transmission in NUAA(No.HTL-A-22G12).
文摘Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.
文摘Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this paper is to explore the potential applications of blockchain in supporting the achievement of these sustainability goals.Starting from a review of the relevant literature on this topic,the main fields in which blockchain can contribute to sustainable development will be identified.The main blockchain applications will then be analyzed and categorized according to these SDGs.This research will then critically present the main blockchain-based projects that emerged in the first stage of the study and were implemented by the United Nations.The main objectives and benefits of each project will be analyzed.This is where the originality of this paper lies.To the best of the author’s knowledge,this is one of the first attempts to present a comprehensive overview of the United Nations’projects related to SDGs 1,2,5,7,9,13,and 16.This paper,which bridges the gap between innovation management and the sustainability field,will contribute to the increasingly current debate on sustainability issues and be beneficial to scholars,practitioners,and policymakers alike.
基金funded by the Project of Yunnan Province’s Xingdian Talents Support Program(yfgrc202437)the Project of the International Cooperation Science Program of National Natural Science Foundation of China(42361144885).
文摘Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.
文摘The rapid urbanization and increasing challenges are faced by cities globally,including climate change,population growth,and resource constraints.Sustainable smart city(also referred to as“smart sustainable city”)can offer innovative solutions by integrating advanced technologies to build smarter,greener,and more livable urban environments with significant benefits.Using the Web of Science(WoS)database,this study examined:(i)the mainstream approaches and current research trends in the literature of sustainable smart city;(ii)the extent to which the research of sustainable smart city aligns with Sustainable Development Goals(SDGs);(iii)the current topics and collaboration patterns in sustainable smart city research;and(iv)the potential opportunities for future research on the sustainable smart city field.The findings indicated that research on sustainable smart city began in 2010 and gained significant momentum in 2013,with China leading,followed by Italy and Spain.Moreover,59.00%of the selected publications on the research of sustainable smart city focus on SDG 11(Sustainable Cities and Communities).Bibliometric analysis outcome revealed that artificial intelligence(AI),big data,machine learning,and deep learning are emerging research fields.The terms smart city,smart cities,and sustainability emerged as the top three co-occurring keywords with the highest link strength,followed by frequently co-occurring keywords such as AI,innovation,big data,urban governance,resilience,machine learning,and Internet of Things(IoT).The clustering results indicated that current studies explored the theoretical foundation,challenges,and future prospects of sustainable smart city,with an emphasis on sustainability.To further support urban sustainability and the attainment of SDGs,the future research of sustainable smart city should explore the application and implications of AI and big data on urban development including cybersecurity and governance challenges.
文摘Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and leading catalytic materials in both electro and photocatalytic water splitting(WSR);two sustainable methods of green hydrogen production.WBGs guarantee long life time of photo charge carriers and thereby surface availability of electrons and holes.Therefore,WBG(with appropriate VB-CB potential)along with small band gap materials or sensitizers can yield extraordinary photocatalytic system for hydrogen production under solar light.The factors such as,free energy of hydrogen adsorption(ΔGH^(*))close to zero,high electron mobility,great thermal as well as electro chemical stability and high tunability make WBG an interesting and excellent catalyst in electrolysis too.Taking into account the current relevance and future scope,the present review article comprehends different dimensions of WBG materials as an electro/photo catalyst for hydrogen evolution reaction.Herein WBG semiconductors are presented under various classes;viz.II-VI,III-V,III-VI,lanthanide oxides,transition metal based systems,carbonaceous materials and other systems such as SiC and MXenes.Catalytic properties of WBGs favorable for hydrogen production are then reviewed.A detailed analysis on relationship between band structure and activity(electro,photo and photo-electrochemical WSR)is performed.The challenges involved in these reactions as well as the direction of advancement in WBG based catalysis are also debated.By virtue of this article authors aims to guideline and promote the development of new WBG based electro/photocatalyst for HER and other applications.
基金financially supported by the National Natural Science Foundation of China(No.21675131)the Volkswagen Foundation(Freigeist Fellowship No.89592)+1 种基金the Natural Science Foundation of Chongqing(No.2020jcyj-zdxmX0003,CSTB2023NSCQ-MSX0924)the National Research Foundation,Singapore,and A*STAR(Agency for Science Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(Award No.U2305D4003).
文摘Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
基金Science and Technology Planning Project of Xi’an,China (No. 22YXYJ0111, to LFP)。
文摘Acute pancreatitis(AP) is not a disorder limited to a single organ,the pancreas,but often results in transient or sustained dysfunction,and even failure,of multiple organs,particularly as the disease progresses.^([1]) Therefore,although AP is primarily a localized disease with systemic consequences in a subset of patients,its clinical manifestations extend beyond digestive system symptoms to encompass a variety of additional symptoms,particularly during disease progression from mild AP(MAP) to severe AP(SAP).