Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a...Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a suspended-cable-stayed beam. In the PDEs, the curvature of main cables and the deformation of cable stays are taken into account. The dynamics of the struc- ture is investigated based on the ODEs when the structure is subjected to a harmonic excitation in the presence of both high-frequency principle resonance and 1:2 internal resonance. It is found that there are typical jumps and saturation phenomena of the vibration amplitude in the struc- ture. And the structure may present quasi-periodic vibration or chaos, if the stiffness of the cable stays membrane and frequency of external excitation are disturbed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10672121 and 11072125)
文摘Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a suspended-cable-stayed beam. In the PDEs, the curvature of main cables and the deformation of cable stays are taken into account. The dynamics of the struc- ture is investigated based on the ODEs when the structure is subjected to a harmonic excitation in the presence of both high-frequency principle resonance and 1:2 internal resonance. It is found that there are typical jumps and saturation phenomena of the vibration amplitude in the struc- ture. And the structure may present quasi-periodic vibration or chaos, if the stiffness of the cable stays membrane and frequency of external excitation are disturbed.